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Distributed Coloring Problem

Objective: properly color the nodes with ≤ Δ + 1 colors
‣Δ: maximum degree
‣Δ + 1: what a simple sequential 

    greedy algorithm achieves
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Distributed MIS Problem

Objective: compute a maximal independent set (MIS)

‣ Independent Set: set of pairwise non-adjacent nodes

‣Maximal: the set cannot be extended

‣ Easily solvable with a greedy algorithm

‣The Maximum Independent Set is a 
different (much harder) problem
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Summary From Last Time
‣ Coloring trees

• 2-coloring is solvable in trees, but requires a lot of time (Ω(D))

• 3-coloring in rooted trees can be solved in O(log* n) time

• 3-coloring in unrooted trees can be solved in O(log n) time

‣ Coloring general graphs

• 3Δ-coloring in graphs with max degree Δ can be solved in O(log* n) time

• (Δ+1)-coloring or MIS in graphs with max degree Δ can be solved in O(3Δ + log* n) time

- Fast if Δ = O(1)

- It can be significantly improved

‣ Today

• Randomized algorithms for (Δ+1)-coloring and MIS: O(log n) time in general graphs!

4



Some Useful Inequalities

5



‣ Finding upper and lower bounds for (1-x)y

Some Useful Inequalities

5



��

����

����

����

����

����

���	

���


����

����

��

�� ���� ���� ���� ���� ���� ���	 ���
 ���� ���� ��

�
�
�
�

‣ Finding upper and lower bounds for (1-x)y

‣ 1 - x  ≤  e-x for all x ∊ ℝ

Some Useful Inequalities

5



‣ Finding upper and lower bounds for (1-x)y

‣ 1 - x  ≤  e-x for all x ∊ ℝ

‣ 1 - x  ≥  4-x for all x ∊ [0, 1/2]

Some Useful Inequalities

5

��

����

����

����

����

����

���	

���


����

����

��

�� ���� ���� ���� ���� ���� ���	 ���
 ���� ���� ��

�
�
�
�



��

����

����

����

����

����

���	

���


����

����

��

�� ���� ���� ���� ���� ���� ���	 ���
 ���� ���� ��

�
�
�
�

�
�

‣ Finding upper and lower bounds for (1-x)y

‣ 1 - x  ≤  e-x for all x ∊ ℝ

‣ 1 - x  ≥  4-x for all x ∊ [0, 1/2]

• 4-x  ≤  1 - x  ≤  e-x for all x ∊ [0, 1/2]

Some Useful Inequalities

5



��

����

����

����

����

����

���	

���


����

����

��

�� ���� ���� ���� ���� ���� ���	 ���
 ���� ���� ��

�
�
�
�

�
�

‣ Finding upper and lower bounds for (1-x)y

‣ 1 - x  ≤  e-x for all x ∊ ℝ

‣ 1 - x  ≥  4-x for all x ∊ [0, 1/2]

• 4-x  ≤  1 - x  ≤  e-x for all x ∊ [0, 1/2]

‣ limx→∞ (1 - 1/x)x = 1/e

• (1 - 1/x)x < 1/e for all x ≥ 1

• (1 - 1/(x+1))x > 1/e for all x > 0

Some Useful Inequalities
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‣ Problem:

• assign to each node a color from {1, ..., Δ + 1}

‣ Simple idea:

• just pick a random color

• if no neighbor picked the same color, keep the color

• otherwise, repeat

Randomized Coloring: Ideas
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‣ Lemma: If each node v ∊ V of a graph G = (V,E) independently picks a uniformly random color Xv from 
{1, ..., Δ+1}, for each node v ∊ V, the probability that Xv ≠ Xu for all neighbors u of v is at least 1/e.

‣ P( Xv = Xu ) 

= 1 / (Δ+1)

‣ P( Xv ≠ Xu ) 

= 1 - 1 / (Δ+1)

‣ P( Xv has a color different from all neighbors ) 

≥ (1 - 1 / (Δ+1))Δ   

> 1/e

Random Colors
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(1 - 1/(x+1))x > 1/e for all x > 0
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‣ Problem: 

• each node v ∊ V in G = (V, E) must get a color from {1, ..., deg(v) + 1}

‣ VC: nodes v ∊ VC ⊂ V already have a color xv such that G[VC] is properly colored

‣ VU = V \ VC: set of uncolored nodes

‣ Fv: set of free colors of node v. Fv = {1, ..., deg(v)+1} \ Uu∊VC ⋂ N(v) { xu }

‣ Algorithm:

• Each node v picks a color uniformly at random from Fv

• Each node v ∊ VU keeps the color if no neighbor in VU picked the same color
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‣ Lemma: in expectation, at least half of the remaining edges are removed.

‣ X ≤ 2 · # deleted edges

‣ 𝔼[X]  ≥  |E|

‣ # deleted edges   ≥   X / 2

‣ 𝔼[ # deleted edges ]   ≥   𝔼[ X / 2 ]   ≥   |E| / 2

Randomized MIS: Luby's Algorithm

22



‣ Lemma: in expectation, at least half of the remaining edges are removed.

Randomized MIS: Luby's Algorithm

23



‣ Lemma: in expectation, at least half of the remaining edges are removed.
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and with high probability.
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‣ Assume we want to compute a coloring on 
graph G

‣ We transform G into a new virtual graph H

‣ that can be simulated on G

1. Create Δ+1 copies of G

2. Connect corresponding nodes in the copies 
to a clique

3. Compute MIS on H
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‣ Claim: the MIS contains exactly one node from each column
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‣ Claim: the MIS contains exactly one node from each column

• At most 1: each column forms a clique
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‣ Claim: the MIS contains exactly one node from each column

• At most 1: each column forms a clique

• At least 1: each neighbor in G can cover at most 1 copy. 
But there are at most Δ neighbors in G, and Δ+1 copies. 
So at least one node for each column cannot be a 
neighbor of MIS nodes of other columns.
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‣ Claim: the MIS contains exactly one node from each column

• At most 1: each column forms a clique

• At least 1: each neighbor in G can cover at most 1 copy. 
But there are at most Δ neighbors in G, and Δ+1 copies. 
So at least one node for each column cannot be a 
neighbor of MIS nodes of other columns.

‣ Algorithm: if a column node vi is in the MIS, node v picks 
color i
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‣ Theorem: together with the O(log n) randomized MIS algorithm, this reduction gives an 
alternative way to compute a Δ+1 coloring in O(log n) rounds.
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‣ Theorem: together with the O(log n) randomized MIS algorithm, this reduction gives an 
alternative way to compute a Δ+1 coloring in O(log n) rounds.

‣ Remark: this construction can be modified to assign colors in {1, ..., deg(v)+1}:

• Put deg(v)+1 copies of v instead of Δ+1
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• Ω(log n / log log n)       [Balliu, Brandt, Kuhn, Olivetti '21] <- result from 3 weeks ago!
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