
Randomized Coloring & MIS

Dennis Olivetti

University of Freiburg, Germany

Distributed Coloring Problem

2

(Δ+1)-Vertex Coloring

Distributed Coloring Problem

Objective: properly color the nodes with ≤ Δ + 1 colors

2

(Δ+1)-Vertex Coloring

Distributed Coloring Problem

Objective: properly color the nodes with ≤ Δ + 1 colors
‣Δ: maximum degree

2

(Δ+1)-Vertex Coloring

Distributed Coloring Problem

Objective: properly color the nodes with ≤ Δ + 1 colors
‣Δ: maximum degree
‣Δ + 1: what a simple sequential

2

(Δ+1)-Vertex Coloring

Distributed Coloring Problem

Objective: properly color the nodes with ≤ Δ + 1 colors
‣Δ: maximum degree
‣Δ + 1: what a simple sequential

 greedy algorithm achieves

2

(Δ+1)-Vertex Coloring

Distributed MIS Problem

3

Maximal Independent Set

Distributed MIS Problem

Objective: compute a maximal independent set (MIS)

3

Maximal Independent Set

Distributed MIS Problem

Objective: compute a maximal independent set (MIS)

‣ Independent Set: set of pairwise non-adjacent nodes

3

Maximal Independent Set

Distributed MIS Problem

Objective: compute a maximal independent set (MIS)

‣ Independent Set: set of pairwise non-adjacent nodes

‣Maximal: the set cannot be extended

3

Maximal Independent Set

Distributed MIS Problem

Objective: compute a maximal independent set (MIS)

‣ Independent Set: set of pairwise non-adjacent nodes

‣Maximal: the set cannot be extended

‣ Easily solvable with a greedy algorithm

3

Maximal Independent Set

Distributed MIS Problem

Objective: compute a maximal independent set (MIS)

‣ Independent Set: set of pairwise non-adjacent nodes

‣Maximal: the set cannot be extended

‣ Easily solvable with a greedy algorithm

‣The Maximum Independent Set is a

3

Maximal Independent Set

Distributed MIS Problem

Objective: compute a maximal independent set (MIS)

‣ Independent Set: set of pairwise non-adjacent nodes

‣Maximal: the set cannot be extended

‣ Easily solvable with a greedy algorithm

‣The Maximum Independent Set is a
different (much harder) problem

3

Maximal Independent Set

Summary From Last Time

4

Summary From Last Time
‣ Coloring trees

4

Summary From Last Time
‣ Coloring trees

• 2-coloring is solvable in trees, but requires a lot of time (Ω(D))

4

Summary From Last Time
‣ Coloring trees

• 2-coloring is solvable in trees, but requires a lot of time (Ω(D))

• 3-coloring in rooted trees can be solved in O(log* n) time

4

Summary From Last Time
‣ Coloring trees

• 2-coloring is solvable in trees, but requires a lot of time (Ω(D))

• 3-coloring in rooted trees can be solved in O(log* n) time

• 3-coloring in unrooted trees can be solved in O(log n) time

4

Summary From Last Time
‣ Coloring trees

• 2-coloring is solvable in trees, but requires a lot of time (Ω(D))

• 3-coloring in rooted trees can be solved in O(log* n) time

• 3-coloring in unrooted trees can be solved in O(log n) time

‣ Coloring general graphs

4

Summary From Last Time
‣ Coloring trees

• 2-coloring is solvable in trees, but requires a lot of time (Ω(D))

• 3-coloring in rooted trees can be solved in O(log* n) time

• 3-coloring in unrooted trees can be solved in O(log n) time

‣ Coloring general graphs

• 3Δ-coloring in graphs with max degree Δ can be solved in O(log* n) time

4

Summary From Last Time
‣ Coloring trees

• 2-coloring is solvable in trees, but requires a lot of time (Ω(D))

• 3-coloring in rooted trees can be solved in O(log* n) time

• 3-coloring in unrooted trees can be solved in O(log n) time

‣ Coloring general graphs

• 3Δ-coloring in graphs with max degree Δ can be solved in O(log* n) time

• (Δ+1)-coloring or MIS in graphs with max degree Δ can be solved in O(3Δ + log* n) time

4

Summary From Last Time
‣ Coloring trees

• 2-coloring is solvable in trees, but requires a lot of time (Ω(D))

• 3-coloring in rooted trees can be solved in O(log* n) time

• 3-coloring in unrooted trees can be solved in O(log n) time

‣ Coloring general graphs

• 3Δ-coloring in graphs with max degree Δ can be solved in O(log* n) time

• (Δ+1)-coloring or MIS in graphs with max degree Δ can be solved in O(3Δ + log* n) time

- Fast if Δ = O(1)

4

Summary From Last Time
‣ Coloring trees

• 2-coloring is solvable in trees, but requires a lot of time (Ω(D))

• 3-coloring in rooted trees can be solved in O(log* n) time

• 3-coloring in unrooted trees can be solved in O(log n) time

‣ Coloring general graphs

• 3Δ-coloring in graphs with max degree Δ can be solved in O(log* n) time

• (Δ+1)-coloring or MIS in graphs with max degree Δ can be solved in O(3Δ + log* n) time

- Fast if Δ = O(1)

- It can be significantly improved

4

Summary From Last Time
‣ Coloring trees

• 2-coloring is solvable in trees, but requires a lot of time (Ω(D))

• 3-coloring in rooted trees can be solved in O(log* n) time

• 3-coloring in unrooted trees can be solved in O(log n) time

‣ Coloring general graphs

• 3Δ-coloring in graphs with max degree Δ can be solved in O(log* n) time

• (Δ+1)-coloring or MIS in graphs with max degree Δ can be solved in O(3Δ + log* n) time

- Fast if Δ = O(1)

- It can be significantly improved

‣ Today

4

Summary From Last Time
‣ Coloring trees

• 2-coloring is solvable in trees, but requires a lot of time (Ω(D))

• 3-coloring in rooted trees can be solved in O(log* n) time

• 3-coloring in unrooted trees can be solved in O(log n) time

‣ Coloring general graphs

• 3Δ-coloring in graphs with max degree Δ can be solved in O(log* n) time

• (Δ+1)-coloring or MIS in graphs with max degree Δ can be solved in O(3Δ + log* n) time

- Fast if Δ = O(1)

- It can be significantly improved

‣ Today

• Randomized algorithms for (Δ+1)-coloring and MIS: O(log n) time in general graphs!

4

Some Useful Inequalities

5

‣ Finding upper and lower bounds for (1-x)y

Some Useful Inequalities

5

��

����

����

����

����

����

���	

���

����

����

��

�� ���� ���� ���� ���� ���� ���	 ���
 ���� ���� ��

�
�
�
�

‣ Finding upper and lower bounds for (1-x)y

‣ 1 - x ≤ e-x for all x ∊ ℝ

Some Useful Inequalities

5

‣ Finding upper and lower bounds for (1-x)y

‣ 1 - x ≤ e-x for all x ∊ ℝ

‣ 1 - x ≥ 4-x for all x ∊ [0, 1/2]

Some Useful Inequalities

5

��

����

����

����

����

����

���	

���

����

����

��

�� ���� ���� ���� ���� ���� ���	 ���
 ���� ���� ��

�
�
�
�

��

����

����

����

����

����

���	

���

����

����

��

�� ���� ���� ���� ���� ���� ���	 ���
 ���� ���� ��

�
�
�
�

�
�

‣ Finding upper and lower bounds for (1-x)y

‣ 1 - x ≤ e-x for all x ∊ ℝ

‣ 1 - x ≥ 4-x for all x ∊ [0, 1/2]

• 4-x ≤ 1 - x ≤ e-x for all x ∊ [0, 1/2]

Some Useful Inequalities

5

��

����

����

����

����

����

���	

���

����

����

��

�� ���� ���� ���� ���� ���� ���	 ���
 ���� ���� ��

�
�
�
�

�
�

‣ Finding upper and lower bounds for (1-x)y

‣ 1 - x ≤ e-x for all x ∊ ℝ

‣ 1 - x ≥ 4-x for all x ∊ [0, 1/2]

• 4-x ≤ 1 - x ≤ e-x for all x ∊ [0, 1/2]

‣ limx→∞ (1 - 1/x)x = 1/e

• (1 - 1/x)x < 1/e for all x ≥ 1

• (1 - 1/(x+1))x > 1/e for all x > 0

Some Useful Inequalities

5
��

����

����

����

����

����

���	

���

����

����

��

�� �� �� �� �� �� �	 �
 �� �� ���

�������

���

����
������

Randomized Coloring: Ideas

6

‣ Problem:

Randomized Coloring: Ideas

6

‣ Problem:

• assign to each node a color from {1, ..., Δ + 1}

Randomized Coloring: Ideas

6

‣ Problem:

• assign to each node a color from {1, ..., Δ + 1}

‣ Simple idea:

Randomized Coloring: Ideas

6

‣ Problem:

• assign to each node a color from {1, ..., Δ + 1}

‣ Simple idea:

• just pick a random color

Randomized Coloring: Ideas

6

‣ Problem:

• assign to each node a color from {1, ..., Δ + 1}

‣ Simple idea:

• just pick a random color

• if no neighbor picked the same color, keep the color

Randomized Coloring: Ideas

6

‣ Problem:

• assign to each node a color from {1, ..., Δ + 1}

‣ Simple idea:

• just pick a random color

• if no neighbor picked the same color, keep the color

• otherwise, repeat

Randomized Coloring: Ideas

6

Random Colors

7

‣ Lemma: If each node v ∊ V of a graph G = (V,E) independently picks a uniformly random color Xv from
{1, ..., Δ+1}, for each node v ∊ V, the probability that Xv ≠ Xu for all neighbors u of v is at least 1/e.

Random Colors

7

‣ Lemma: If each node v ∊ V of a graph G = (V,E) independently picks a uniformly random color Xv from
{1, ..., Δ+1}, for each node v ∊ V, the probability that Xv ≠ Xu for all neighbors u of v is at least 1/e.

‣ P(Xv = Xu)

Random Colors

7

Xv

Xu

‣ Lemma: If each node v ∊ V of a graph G = (V,E) independently picks a uniformly random color Xv from
{1, ..., Δ+1}, for each node v ∊ V, the probability that Xv ≠ Xu for all neighbors u of v is at least 1/e.

‣ P(Xv = Xu)

= 1 / (Δ+1)

Random Colors

7

Xv

Xu

‣ Lemma: If each node v ∊ V of a graph G = (V,E) independently picks a uniformly random color Xv from
{1, ..., Δ+1}, for each node v ∊ V, the probability that Xv ≠ Xu for all neighbors u of v is at least 1/e.

‣ P(Xv = Xu)

= 1 / (Δ+1)

‣ P(Xv ≠ Xu)

Random Colors

7

Xv

Xu

‣ Lemma: If each node v ∊ V of a graph G = (V,E) independently picks a uniformly random color Xv from
{1, ..., Δ+1}, for each node v ∊ V, the probability that Xv ≠ Xu for all neighbors u of v is at least 1/e.

‣ P(Xv = Xu)

= 1 / (Δ+1)

‣ P(Xv ≠ Xu)

= 1 - 1 / (Δ+1)

Random Colors

7

Xv

Xu

‣ Lemma: If each node v ∊ V of a graph G = (V,E) independently picks a uniformly random color Xv from
{1, ..., Δ+1}, for each node v ∊ V, the probability that Xv ≠ Xu for all neighbors u of v is at least 1/e.

‣ P(Xv = Xu)

= 1 / (Δ+1)

‣ P(Xv ≠ Xu)

= 1 - 1 / (Δ+1)

‣ P(Xv has a color different from all neighbors)

Random Colors

7

Xv

Xu

‣ Lemma: If each node v ∊ V of a graph G = (V,E) independently picks a uniformly random color Xv from
{1, ..., Δ+1}, for each node v ∊ V, the probability that Xv ≠ Xu for all neighbors u of v is at least 1/e.

‣ P(Xv = Xu)

= 1 / (Δ+1)

‣ P(Xv ≠ Xu)

= 1 - 1 / (Δ+1)

‣ P(Xv has a color different from all neighbors)

≥ (1 - 1 / (Δ+1))Δ

Random Colors

7

Xv

Xu

‣ Lemma: If each node v ∊ V of a graph G = (V,E) independently picks a uniformly random color Xv from
{1, ..., Δ+1}, for each node v ∊ V, the probability that Xv ≠ Xu for all neighbors u of v is at least 1/e.

‣ P(Xv = Xu)

= 1 / (Δ+1)

‣ P(Xv ≠ Xu)

= 1 - 1 / (Δ+1)

‣ P(Xv has a color different from all neighbors)

≥ (1 - 1 / (Δ+1))Δ

Random Colors

7

Xv

Xu

(1 - 1/(x+1))x > 1/e for all x > 0

‣ Lemma: If each node v ∊ V of a graph G = (V,E) independently picks a uniformly random color Xv from
{1, ..., Δ+1}, for each node v ∊ V, the probability that Xv ≠ Xu for all neighbors u of v is at least 1/e.

‣ P(Xv = Xu)

= 1 / (Δ+1)

‣ P(Xv ≠ Xu)

= 1 - 1 / (Δ+1)

‣ P(Xv has a color different from all neighbors)

≥ (1 - 1 / (Δ+1))Δ

> 1/e

Random Colors

7

Xv

Xu

(1 - 1/(x+1))x > 1/e for all x > 0

Extending an Existing Coloring

8

‣ After the first round, some nodes already picked a color (they
were lucky with probability > 1/e)

Extending an Existing Coloring

8

‣ After the first round, some nodes already picked a color (they
were lucky with probability > 1/e)

‣ In the second round, each node picks a random color

Extending an Existing Coloring

8

‣ After the first round, some nodes already picked a color (they
were lucky with probability > 1/e)

‣ In the second round, each node picks a random color

• It does not make sense to try colors already picked by the
neighbors

Extending an Existing Coloring

8

‣ After the first round, some nodes already picked a color (they
were lucky with probability > 1/e)

‣ In the second round, each node picks a random color

• It does not make sense to try colors already picked by the
neighbors

‣ Is it still true that for every possible color Xv, the probability
that Xv ≠ Xu for all neighbors u of v is at least 1/e?

Extending an Existing Coloring

8

‣ After the first round, some nodes already picked a color (they
were lucky with probability > 1/e)

‣ In the second round, each node picks a random color

• It does not make sense to try colors already picked by the
neighbors

‣ Is it still true that for every possible color Xv, the probability
that Xv ≠ Xu for all neighbors u of v is at least 1/e?

• No! Some colors are better than others.

Extending an Existing Coloring

8

‣ After the first round, some nodes already picked a color (they
were lucky with probability > 1/e)

‣ In the second round, each node picks a random color

• It does not make sense to try colors already picked by the
neighbors

‣ Is it still true that for every possible color Xv, the probability
that Xv ≠ Xu for all neighbors u of v is at least 1/e?

• No! Some colors are better than others.

Extending an Existing Coloring

8

43
2

1

4

3

2
1

4

3

2

1

4

3
2 1

4

3

2

1

‣ After the first round, some nodes already picked a color (they
were lucky with probability > 1/e)

‣ In the second round, each node picks a random color

• It does not make sense to try colors already picked by the
neighbors

‣ Is it still true that for every possible color Xv, the probability
that Xv ≠ Xu for all neighbors u of v is at least 1/e?

• No! Some colors are better than others.

Extending an Existing Coloring

8

43
2

1

4

3

2
1

4

3

2

1

4

3
2 1

4

3

2

1
{5,6}

{5,6}

{5,6}

{5,6}{5,6}

‣ After the first round, some nodes already picked a color (they
were lucky with probability > 1/e)

‣ In the second round, each node picks a random color

• It does not make sense to try colors already picked by the
neighbors

‣ Is it still true that for every possible color Xv, the probability
that Xv ≠ Xu for all neighbors u of v is at least 1/e?

• No! Some colors are better than others.

Extending an Existing Coloring

8

43
2

1

4

3

2
1

4

3

2

1

4

3
2 1

4

3

2

1
{5,6}

{5,6}

{5,6}

{5,6}{5,6}

{1,2,3,4,5,6}

Extending an Existing Coloring

9

‣ Let's make the problem harder and more precise

Extending an Existing Coloring

9

‣ Let's make the problem harder and more precise

‣ Problem:

Extending an Existing Coloring

9

‣ Let's make the problem harder and more precise

‣ Problem:

• each node v ∊ V in G = (V, E) must get a color from {1, ..., deg(v) + 1}

Extending an Existing Coloring

9

‣ Let's make the problem harder and more precise

‣ Problem:

• each node v ∊ V in G = (V, E) must get a color from {1, ..., deg(v) + 1}

‣ VC: nodes v ∊ VC ⊂ V already have a color xv such that G[VC] is properly colored

Extending an Existing Coloring

9

in VC

‣ Let's make the problem harder and more precise

‣ Problem:

• each node v ∊ V in G = (V, E) must get a color from {1, ..., deg(v) + 1}

‣ VC: nodes v ∊ VC ⊂ V already have a color xv such that G[VC] is properly colored

Extending an Existing Coloring

9

in VCSubgraph induced by nodes in VC

‣ Let's make the problem harder and more precise

‣ Problem:

• each node v ∊ V in G = (V, E) must get a color from {1, ..., deg(v) + 1}

‣ VC: nodes v ∊ VC ⊂ V already have a color xv such that G[VC] is properly colored

‣ VU = V \ VC: set of uncolored nodes

Extending an Existing Coloring

9

in VC

in VU

‣ Let's make the problem harder and more precise

‣ Problem:

• each node v ∊ V in G = (V, E) must get a color from {1, ..., deg(v) + 1}

‣ VC: nodes v ∊ VC ⊂ V already have a color xv such that G[VC] is properly colored

‣ VU = V \ VC: set of uncolored nodes

‣ Fv: set of free colors of node v. Fv = {1, ..., deg(v)+1} \ Uu∊VC ⋂ N(v) { xu }

Extending an Existing Coloring

9

in VC

in VU

‣ Let's make the problem harder and more precise

‣ Problem:

• each node v ∊ V in G = (V, E) must get a color from {1, ..., deg(v) + 1}

‣ VC: nodes v ∊ VC ⊂ V already have a color xv such that G[VC] is properly colored

‣ VU = V \ VC: set of uncolored nodes

‣ Fv: set of free colors of node v. Fv = {1, ..., deg(v)+1} \ Uu∊VC ⋂ N(v) { xu }

Extending an Existing Coloring

9

All colors

in VC

in VU

‣ Let's make the problem harder and more precise

‣ Problem:

• each node v ∊ V in G = (V, E) must get a color from {1, ..., deg(v) + 1}

‣ VC: nodes v ∊ VC ⊂ V already have a color xv such that G[VC] is properly colored

‣ VU = V \ VC: set of uncolored nodes

‣ Fv: set of free colors of node v. Fv = {1, ..., deg(v)+1} \ Uu∊VC ⋂ N(v) { xu }

Extending an Existing Coloring

9

All colors minus

in VC

in VU

‣ Let's make the problem harder and more precise

‣ Problem:

• each node v ∊ V in G = (V, E) must get a color from {1, ..., deg(v) + 1}

‣ VC: nodes v ∊ VC ⊂ V already have a color xv such that G[VC] is properly colored

‣ VU = V \ VC: set of uncolored nodes

‣ Fv: set of free colors of node v. Fv = {1, ..., deg(v)+1} \ Uu∊VC ⋂ N(v) { xu }

Extending an Existing Coloring

9

All colors minus the colors used by the neighbors

in VC

in VU

‣ Let's make the problem harder and more precise

‣ Problem:

• each node v ∊ V in G = (V, E) must get a color from {1, ..., deg(v) + 1}

‣ VC: nodes v ∊ VC ⊂ V already have a color xv such that G[VC] is properly colored

‣ VU = V \ VC: set of uncolored nodes

‣ Fv: set of free colors of node v. Fv = {1, ..., deg(v)+1} \ Uu∊VC ⋂ N(v) { xu }

Extending an Existing Coloring

9

in VC

in VU

‣ Let's make the problem harder and more precise

‣ Problem:

• each node v ∊ V in G = (V, E) must get a color from {1, ..., deg(v) + 1}

‣ VC: nodes v ∊ VC ⊂ V already have a color xv such that G[VC] is properly colored

‣ VU = V \ VC: set of uncolored nodes

‣ Fv: set of free colors of node v. Fv = {1, ..., deg(v)+1} \ Uu∊VC ⋂ N(v) { xu }

‣ Algorithm:

Extending an Existing Coloring

9

in VC

in VU

‣ Let's make the problem harder and more precise

‣ Problem:

• each node v ∊ V in G = (V, E) must get a color from {1, ..., deg(v) + 1}

‣ VC: nodes v ∊ VC ⊂ V already have a color xv such that G[VC] is properly colored

‣ VU = V \ VC: set of uncolored nodes

‣ Fv: set of free colors of node v. Fv = {1, ..., deg(v)+1} \ Uu∊VC ⋂ N(v) { xu }

‣ Algorithm:

• Each node v picks a color uniformly at random from Fv

Extending an Existing Coloring

9

in VC

in VU

‣ Let's make the problem harder and more precise

‣ Problem:

• each node v ∊ V in G = (V, E) must get a color from {1, ..., deg(v) + 1}

‣ VC: nodes v ∊ VC ⊂ V already have a color xv such that G[VC] is properly colored

‣ VU = V \ VC: set of uncolored nodes

‣ Fv: set of free colors of node v. Fv = {1, ..., deg(v)+1} \ Uu∊VC ⋂ N(v) { xu }

‣ Algorithm:

• Each node v picks a color uniformly at random from Fv

• Each node v ∊ VU keeps the color if no neighbor in VU picked the same color

Extending an Existing Coloring

9

in VC

in VU

Extending an Existing Coloring

10

‣ Nx(v): uncolored neighbors u of v for which x ∊ Fu

Extending an Existing Coloring

10

‣ Nx(v): uncolored neighbors u of v for which x ∊ Fu

Extending an Existing Coloring

10

Neighbors of v that could pick color x

‣ Nx(v): uncolored neighbors u of v for which x ∊ Fu

‣ weight wx(v) of a color x ∊ Fv for v ∊ VU: wx(v) = ∑ 1 / |Fu|

Extending an Existing Coloring

10

u∊Nx(v)

Neighbors of v that could pick color x

‣ Nx(v): uncolored neighbors u of v for which x ∊ Fu

‣ weight wx(v) of a color x ∊ Fv for v ∊ VU: wx(v) = ∑ 1 / |Fu|

Extending an Existing Coloring

10

u∊Nx(v)

Neighbors of v that could pick color x

For each neighbor,
sum the probability that it takes color x

‣ Nx(v): uncolored neighbors u of v for which x ∊ Fu

‣ weight wx(v) of a color x ∊ Fv for v ∊ VU: wx(v) = ∑ 1 / |Fu|

‣ Intuition: wx(v) is not the probability that some neighbor of v picks color x,
 but intuitively it corresponds to that

Extending an Existing Coloring

10

u∊Nx(v)

Neighbors of v that could pick color x

For each neighbor,
sum the probability that it takes color x

‣ Nx(v): uncolored neighbors u of v for which x ∊ Fu

‣ weight wx(v) of a color x ∊ Fv for v ∊ VU: wx(v) = ∑ 1 / |Fu|

‣ Intuition: wx(v) is not the probability that some neighbor of v picks color x,
 but intuitively it corresponds to that

‣ Lemma: ∑ wx(v) ≤ |N(v) ⋂ VU|

Extending an Existing Coloring

10

u∊Nx(v)

Neighbors of v that could pick color x

For each neighbor,
sum the probability that it takes color x

x ∊ Fv

‣ Nx(v): uncolored neighbors u of v for which x ∊ Fu

‣ weight wx(v) of a color x ∊ Fv for v ∊ VU: wx(v) = ∑ 1 / |Fu|

‣ Intuition: wx(v) is not the probability that some neighbor of v picks color x,
 but intuitively it corresponds to that

‣ Lemma: ∑ wx(v) ≤ |N(v) ⋂ VU|

Extending an Existing Coloring

10

u∊Nx(v)

Neighbors of v that could pick color x

For each neighbor,
sum the probability that it takes color x

x ∊ Fv

The sum of the weights is at most
the number of uncolored neighbors

‣ Nx(v): uncolored neighbors u of v for which x ∊ Fu

‣ weight wx(v) of a color x ∊ Fv for v ∊ VU: wx(v) = ∑ 1 / |Fu|

‣ Intuition: wx(v) is not the probability that some neighbor of v picks color x,
 but intuitively it corresponds to that

‣ Lemma: ∑ wx(v) ≤ |N(v) ⋂ VU|

Extending an Existing Coloring

10

u∊Nx(v)

Neighbors of v that could pick color x

For each neighbor,
sum the probability that it takes color x

x ∊ Fv

The sum of the weights is at most
the number of uncolored neighbors

∑ wx(v)
x ∊ Fv

‣ Nx(v): uncolored neighbors u of v for which x ∊ Fu

‣ weight wx(v) of a color x ∊ Fv for v ∊ VU: wx(v) = ∑ 1 / |Fu|

‣ Intuition: wx(v) is not the probability that some neighbor of v picks color x,
 but intuitively it corresponds to that

‣ Lemma: ∑ wx(v) ≤ |N(v) ⋂ VU|

Extending an Existing Coloring

10

u∊Nx(v)

Neighbors of v that could pick color x

For each neighbor,
sum the probability that it takes color x

x ∊ Fv

The sum of the weights is at most
the number of uncolored neighbors

∑ wx(v)
x ∊ Fv

= ∑ ∑ 1 / |Fu|
x ∊ Fv u∊Nx(v)

‣ Nx(v): uncolored neighbors u of v for which x ∊ Fu

‣ weight wx(v) of a color x ∊ Fv for v ∊ VU: wx(v) = ∑ 1 / |Fu|

‣ Intuition: wx(v) is not the probability that some neighbor of v picks color x,
 but intuitively it corresponds to that

‣ Lemma: ∑ wx(v) ≤ |N(v) ⋂ VU|

Extending an Existing Coloring

10

u∊Nx(v)

Neighbors of v that could pick color x

For each neighbor,
sum the probability that it takes color x

x ∊ Fv

The sum of the weights is at most
the number of uncolored neighbors

∑ wx(v)
x ∊ Fv

= ∑ ∑ 1 / |Fu|
x ∊ Fv u∊Nx(v)

= ∑ ∑ 1 / |Fu|
u ∊ N(v)⋂VU x ∊ Fv ⋂ Fu

‣ Nx(v): uncolored neighbors u of v for which x ∊ Fu

‣ weight wx(v) of a color x ∊ Fv for v ∊ VU: wx(v) = ∑ 1 / |Fu|

‣ Intuition: wx(v) is not the probability that some neighbor of v picks color x,
 but intuitively it corresponds to that

‣ Lemma: ∑ wx(v) ≤ |N(v) ⋂ VU|

Extending an Existing Coloring

10

u∊Nx(v)

Neighbors of v that could pick color x

For each neighbor,
sum the probability that it takes color x

x ∊ Fv

The sum of the weights is at most
the number of uncolored neighbors

∑ wx(v)
x ∊ Fv

= ∑ ∑ 1 / |Fu|
x ∊ Fv u∊Nx(v)

= ∑ ∑ 1 / |Fu|
u ∊ N(v)⋂VU x ∊ Fv ⋂ Fu

Uncolored neighbors

‣ Nx(v): uncolored neighbors u of v for which x ∊ Fu

‣ weight wx(v) of a color x ∊ Fv for v ∊ VU: wx(v) = ∑ 1 / |Fu|

‣ Intuition: wx(v) is not the probability that some neighbor of v picks color x,
 but intuitively it corresponds to that

‣ Lemma: ∑ wx(v) ≤ |N(v) ⋂ VU|

Extending an Existing Coloring

10

u∊Nx(v)

Neighbors of v that could pick color x

For each neighbor,
sum the probability that it takes color x

x ∊ Fv

The sum of the weights is at most
the number of uncolored neighbors

∑ wx(v)
x ∊ Fv

= ∑ ∑ 1 / |Fu|
x ∊ Fv u∊Nx(v)

= ∑ ∑ 1 / |Fu|
u ∊ N(v)⋂VU x ∊ Fv ⋂ Fu

Uncolored neighbors Common colors

‣ Nx(v): uncolored neighbors u of v for which x ∊ Fu

‣ weight wx(v) of a color x ∊ Fv for v ∊ VU: wx(v) = ∑ 1 / |Fu|

‣ Intuition: wx(v) is not the probability that some neighbor of v picks color x,
 but intuitively it corresponds to that

‣ Lemma: ∑ wx(v) ≤ |N(v) ⋂ VU|

Extending an Existing Coloring

10

u∊Nx(v)

Neighbors of v that could pick color x

For each neighbor,
sum the probability that it takes color x

x ∊ Fv

The sum of the weights is at most
the number of uncolored neighbors

∑ wx(v)
x ∊ Fv

= ∑ ∑ 1 / |Fu|
x ∊ Fv u∊Nx(v)

= ∑ ∑ 1 / |Fu|
u ∊ N(v)⋂VU x ∊ Fv ⋂ Fu

Uncolored neighbors Common colors

= ∑ |Fv ⋂ Fu| / |Fu|
u ∊ N(v)⋂VU

‣ Nx(v): uncolored neighbors u of v for which x ∊ Fu

‣ weight wx(v) of a color x ∊ Fv for v ∊ VU: wx(v) = ∑ 1 / |Fu|

‣ Intuition: wx(v) is not the probability that some neighbor of v picks color x,
 but intuitively it corresponds to that

‣ Lemma: ∑ wx(v) ≤ |N(v) ⋂ VU|

Extending an Existing Coloring

10

u∊Nx(v)

Neighbors of v that could pick color x

For each neighbor,
sum the probability that it takes color x

x ∊ Fv

The sum of the weights is at most
the number of uncolored neighbors

∑ wx(v)
x ∊ Fv

= ∑ ∑ 1 / |Fu|
x ∊ Fv u∊Nx(v)

= ∑ ∑ 1 / |Fu|
u ∊ N(v)⋂VU x ∊ Fv ⋂ Fu

Uncolored neighbors Common colors

= ∑ |Fv ⋂ Fu| / |Fu|
u ∊ N(v)⋂VU

≤ ∑ 1
u ∊ N(v)⋂VU

‣ Nx(v): uncolored neighbors u of v for which x ∊ Fu

‣ weight wx(v) of a color x ∊ Fv for v ∊ VU: wx(v) = ∑ 1 / |Fu|

‣ Intuition: wx(v) is not the probability that some neighbor of v picks color x,
 but intuitively it corresponds to that

‣ Lemma: ∑ wx(v) ≤ |N(v) ⋂ VU|

Extending an Existing Coloring

10

u∊Nx(v)

Neighbors of v that could pick color x

For each neighbor,
sum the probability that it takes color x

x ∊ Fv

The sum of the weights is at most
the number of uncolored neighbors

∑ wx(v)
x ∊ Fv

= ∑ ∑ 1 / |Fu|
x ∊ Fv u∊Nx(v)

= ∑ ∑ 1 / |Fu|
u ∊ N(v)⋂VU x ∊ Fv ⋂ Fu

Uncolored neighbors Common colors

= ∑ |Fv ⋂ Fu| / |Fu|
u ∊ N(v)⋂VU

≤ ∑ 1
u ∊ N(v)⋂VU

= |N(v) ⋂ VU|

Extending an Existing Coloring

11

‣ Lemma: ∑ wx(v) ≤ |N(v) ⋂ VU|

Extending an Existing Coloring

11

x ∊ Fv

‣ Lemma: ∑ wx(v) ≤ |N(v) ⋂ VU|

‣ Corollary: ∑ wx(v) ≤ |N(v) ⋂ VU| ≤ |Fv| - 1

Extending an Existing Coloring

11

x ∊ Fv

x ∊ Fv

‣ Lemma: ∑ wx(v) ≤ |N(v) ⋂ VU|

‣ Corollary: ∑ wx(v) ≤ |N(v) ⋂ VU| ≤ |Fv| - 1

Extending an Existing Coloring

11

x ∊ Fv

x ∊ Fv

Extending an Existing Coloring

12

‣ Lemma: If node v ∊ VU picks the random color x ∊ Fv, the probability that v can keep its colors
is at least 4-wx(v)

Extending an Existing Coloring

12

‣ Lemma: If node v ∊ VU picks the random color x ∊ Fv, the probability that v can keep its colors
is at least 4-wx(v)

‣ P(v can keep its color x)

Extending an Existing Coloring

12

‣ Lemma: If node v ∊ VU picks the random color x ∊ Fv, the probability that v can keep its colors
is at least 4-wx(v)

‣ P(v can keep its color x)

= ∏ (1 - 1 / |Fu|)

Extending an Existing Coloring

12

u ∊ Nx(v)

‣ Lemma: If node v ∊ VU picks the random color x ∊ Fv, the probability that v can keep its colors
is at least 4-wx(v)

‣ P(v can keep its color x)

= ∏ (1 - 1 / |Fu|)

Extending an Existing Coloring

12

u ∊ Nx(v)

Neighbors that could also pick x

‣ Lemma: If node v ∊ VU picks the random color x ∊ Fv, the probability that v can keep its colors
is at least 4-wx(v)

‣ P(v can keep its color x)

= ∏ (1 - 1 / |Fu|)

Extending an Existing Coloring

12

u ∊ Nx(v)

Neighbors that could also pick x

Probability that u does not pick x

‣ Lemma: If node v ∊ VU picks the random color x ∊ Fv, the probability that v can keep its colors
is at least 4-wx(v)

‣ P(v can keep its color x)

= ∏ (1 - 1 / |Fu|)

Extending an Existing Coloring

12

(1 - x) ≥ 4-x for all x ∊ [0, 1/2]

u ∊ Nx(v)

Neighbors that could also pick x

Probability that u does not pick x

‣ Lemma: If node v ∊ VU picks the random color x ∊ Fv, the probability that v can keep its colors
is at least 4-wx(v)

‣ P(v can keep its color x)

= ∏ (1 - 1 / |Fu|)

Extending an Existing Coloring

12

(1 - x) ≥ 4-x for all x ∊ [0, 1/2]

u ∊ Nx(v)

Neighbors that could also pick x

Probability that u does not pick x

|Fu| ≥ 2, otherwise u has no uncolored neighbors

‣ Lemma: If node v ∊ VU picks the random color x ∊ Fv, the probability that v can keep its colors
is at least 4-wx(v)

‣ P(v can keep its color x)

= ∏ (1 - 1 / |Fu|)

Extending an Existing Coloring

12

(1 - x) ≥ 4-x for all x ∊ [0, 1/2]

u ∊ Nx(v)

Neighbors that could also pick x

Probability that u does not pick x

|Fu| ≥ 2, otherwise u has no uncolored neighbors

≥ ∏ 4
u ∊ Nx(v)

-1 / |Fu|

‣ Lemma: If node v ∊ VU picks the random color x ∊ Fv, the probability that v can keep its colors
is at least 4-wx(v)

‣ P(v can keep its color x)

= ∏ (1 - 1 / |Fu|)

Extending an Existing Coloring

12

(1 - x) ≥ 4-x for all x ∊ [0, 1/2]

u ∊ Nx(v)

Neighbors that could also pick x

Probability that u does not pick x

|Fu| ≥ 2, otherwise u has no uncolored neighbors

≥ ∏ 4
u ∊ Nx(v)

-1 / |Fu|
= 4 u∊Nx(v)

- ∑ 1 / |Fu|

‣ Lemma: If node v ∊ VU picks the random color x ∊ Fv, the probability that v can keep its colors
is at least 4-wx(v)

‣ P(v can keep its color x)

= ∏ (1 - 1 / |Fu|)

Extending an Existing Coloring

12

(1 - x) ≥ 4-x for all x ∊ [0, 1/2]

u ∊ Nx(v)

Neighbors that could also pick x

Probability that u does not pick x

|Fu| ≥ 2, otherwise u has no uncolored neighbors

≥ ∏ 4
u ∊ Nx(v)

-1 / |Fu|
= 4 u∊Nx(v)

- ∑ 1 / |Fu|
= 4

- wx(v)

Extending an Existing Coloring

13

‣ Theorem: The probability that a node v ∊ VU can keep its random color is at least 1/4

Extending an Existing Coloring

13

‣ Theorem: The probability that a node v ∊ VU can keep its random color is at least 1/4

‣ P(v can keep its color Xv)

Extending an Existing Coloring

13

‣ Theorem: The probability that a node v ∊ VU can keep its random color is at least 1/4

‣ P(v can keep its color Xv)

= ∑ 1 / |Fv| · P(v can keep color x | Xv = x)

Extending an Existing Coloring

13

x ∊ Fv

‣ Theorem: The probability that a node v ∊ VU can keep its random color is at least 1/4

‣ P(v can keep its color Xv)

= ∑ 1 / |Fv| · P(v can keep color x | Xv = x)

≥ ∑ 1 / |Fv| ·

Extending an Existing Coloring

13

x ∊ Fv

x ∊ Fv

4
- wx(v)

‣ Theorem: The probability that a node v ∊ VU can keep its random color is at least 1/4

‣ P(v can keep its color Xv)

= ∑ 1 / |Fv| · P(v can keep color x | Xv = x)

≥ ∑ 1 / |Fv| ·

Extending an Existing Coloring

13

x ∊ Fv

x ∊ Fv

4
- wx(v)

≥ 4 x∊Fv

- 1 / |Fv| · ∑ wx(v)

‣ Theorem: The probability that a node v ∊ VU can keep its random color is at least 1/4

‣ P(v can keep its color Xv)

= ∑ 1 / |Fv| · P(v can keep color x | Xv = x)

≥ ∑ 1 / |Fv| ·

Extending an Existing Coloring

13

x ∊ Fv

x ∊ Fv

4
- wx(v)

≥ 4 x∊Fv

- 1 / |Fv| · ∑ wx(v)

Let f(wx) = 4-wx(v). This is average(f(wx))

‣ Theorem: The probability that a node v ∊ VU can keep its random color is at least 1/4

‣ P(v can keep its color Xv)

= ∑ 1 / |Fv| · P(v can keep color x | Xv = x)

≥ ∑ 1 / |Fv| ·

Extending an Existing Coloring

13

x ∊ Fv

x ∊ Fv

4
- wx(v)

≥ 4 x∊Fv

- 1 / |Fv| · ∑ wx(v)

Let f(wx) = 4-wx(v). This is average(f(wx))

This is f(average(wx))

‣ Theorem: The probability that a node v ∊ VU can keep its random color is at least 1/4

‣ P(v can keep its color Xv)

= ∑ 1 / |Fv| · P(v can keep color x | Xv = x)

≥ ∑ 1 / |Fv| ·

Extending an Existing Coloring

13

x ∊ Fv

x ∊ Fv

4
- wx(v)

≥ 4 x∊Fv

- 1 / |Fv| · ∑ wx(v)

average(f(x)) ≥ f(average(x)) if f is convex

Let f(wx) = 4-wx(v). This is average(f(wx))

This is f(average(wx))

‣ Theorem: The probability that a node v ∊ VU can keep its random color is at least 1/4

‣ P(v can keep its color Xv)

= ∑ 1 / |Fv| · P(v can keep color x | Xv = x)

≥ ∑ 1 / |Fv| ·

Extending an Existing Coloring

13

x ∊ Fv

x ∊ Fv

4
- wx(v)

≥ 4 x∊Fv

- 1 / |Fv| · ∑ wx(v)

average(f(x)) ≥ f(average(x)) if f is convex

Let f(wx) = 4-wx(v). This is average(f(wx))

This is f(average(wx))

‣ Theorem: The probability that a node v ∊ VU can keep its random color is at least 1/4

‣ P(v can keep its color Xv)

= ∑ 1 / |Fv| · P(v can keep color x | Xv = x)

≥ ∑ 1 / |Fv| ·

Extending an Existing Coloring

13

x ∊ Fv

x ∊ Fv

4
- wx(v)

≥ 4 x∊Fv

- 1 / |Fv| · ∑ wx(v)

average(f(x)) ≥ f(average(x)) if f is convex

Let f(wx) = 4-wx(v). This is average(f(wx))

This is f(average(wx))

x1 x2

‣ Theorem: The probability that a node v ∊ VU can keep its random color is at least 1/4

‣ P(v can keep its color Xv)

= ∑ 1 / |Fv| · P(v can keep color x | Xv = x)

≥ ∑ 1 / |Fv| ·

Extending an Existing Coloring

13

x ∊ Fv

x ∊ Fv

4
- wx(v)

≥ 4 x∊Fv

- 1 / |Fv| · ∑ wx(v)

average(f(x)) ≥ f(average(x)) if f is convex

Let f(wx) = 4-wx(v). This is average(f(wx))

This is f(average(wx))

x1 x2

f(x1)

f(x2)

‣ Theorem: The probability that a node v ∊ VU can keep its random color is at least 1/4

‣ P(v can keep its color Xv)

= ∑ 1 / |Fv| · P(v can keep color x | Xv = x)

≥ ∑ 1 / |Fv| ·

Extending an Existing Coloring

13

x ∊ Fv

x ∊ Fv

4
- wx(v)

≥ 4 x∊Fv

- 1 / |Fv| · ∑ wx(v)

average(f(x)) ≥ f(average(x)) if f is convex

Let f(wx) = 4-wx(v). This is average(f(wx))

This is f(average(wx))

x1 x2

f(x1)

f(x2)

avg(x)

‣ Theorem: The probability that a node v ∊ VU can keep its random color is at least 1/4

‣ P(v can keep its color Xv)

= ∑ 1 / |Fv| · P(v can keep color x | Xv = x)

≥ ∑ 1 / |Fv| ·

Extending an Existing Coloring

13

x ∊ Fv

x ∊ Fv

4
- wx(v)

≥ 4 x∊Fv

- 1 / |Fv| · ∑ wx(v)

average(f(x)) ≥ f(average(x)) if f is convex

Let f(wx) = 4-wx(v). This is average(f(wx))

This is f(average(wx))

x1 x2

f(x1)

f(x2)

avg(x)

f(avg(x))

‣ Theorem: The probability that a node v ∊ VU can keep its random color is at least 1/4

‣ P(v can keep its color Xv)

= ∑ 1 / |Fv| · P(v can keep color x | Xv = x)

≥ ∑ 1 / |Fv| ·

Extending an Existing Coloring

13

x ∊ Fv

x ∊ Fv

4
- wx(v)

≥ 4 x∊Fv

- 1 / |Fv| · ∑ wx(v)

average(f(x)) ≥ f(average(x)) if f is convex

Let f(wx) = 4-wx(v). This is average(f(wx))

This is f(average(wx))

x1 x2

f(x1)

f(x2)

avg(x)

f(avg(x))
avg(f(x))

‣ Theorem: The probability that a node v ∊ VU can keep its random color is at least 1/4

‣ P(v can keep its color Xv)

= ∑ 1 / |Fv| · P(v can keep color x | Xv = x)

≥ ∑ 1 / |Fv| ·

Extending an Existing Coloring

13

x ∊ Fv

x ∊ Fv

4
- wx(v)

≥ 4 x∊Fv

- 1 / |Fv| · ∑ wx(v)

‣ Theorem: The probability that a node v ∊ VU can keep its random color is at least 1/4

‣ P(v can keep its color Xv)

= ∑ 1 / |Fv| · P(v can keep color x | Xv = x)

≥ ∑ 1 / |Fv| ·

Extending an Existing Coloring

13

x ∊ Fv

x ∊ Fv

4
- wx(v)

≥ 4 x∊Fv

- 1 / |Fv| · ∑ wx(v)

≥ 4
- (1 / |Fv|) · (|Fv| -1)

‣ Theorem: The probability that a node v ∊ VU can keep its random color is at least 1/4

‣ P(v can keep its color Xv)

= ∑ 1 / |Fv| · P(v can keep color x | Xv = x)

≥ ∑ 1 / |Fv| ·

Extending an Existing Coloring

13

x ∊ Fv

x ∊ Fv

4
- wx(v)

≥ 4 x∊Fv

- 1 / |Fv| · ∑ wx(v)

≥ 4
- (1 / |Fv|) · (|Fv| -1)

≥ 4
- 1

Randomized Coloring

14

‣ Theorem: the discussed randomized coloring algorithm computes a valid coloring of G=(V, E)
in O(log n) rounds in expectation and with high probability. Every node v∊V gets a color in
{1, ..., deg(v) + 1}

Randomized Coloring

14

‣ Theorem: the discussed randomized coloring algorithm computes a valid coloring of G=(V, E)
in O(log n) rounds in expectation and with high probability. Every node v∊V gets a color in
{1, ..., deg(v) + 1}

‣ P(v uncolored after T phases) ≤ (3/4)T

Randomized Coloring

14

‣ Theorem: the discussed randomized coloring algorithm computes a valid coloring of G=(V, E)
in O(log n) rounds in expectation and with high probability. Every node v∊V gets a color in
{1, ..., deg(v) + 1}

‣ P(v uncolored after T phases) ≤ (3/4)T

‣ Choose T = (c+1) log4/3 n = O(log n)

Randomized Coloring

14

‣ Theorem: the discussed randomized coloring algorithm computes a valid coloring of G=(V, E)
in O(log n) rounds in expectation and with high probability. Every node v∊V gets a color in
{1, ..., deg(v) + 1}

‣ P(v uncolored after T phases) ≤ (3/4)T

‣ Choose T = (c+1) log4/3 n = O(log n)

‣ P(v uncolored after T phases) ≤ 1 / nc+1

Randomized Coloring

14

‣ Theorem: the discussed randomized coloring algorithm computes a valid coloring of G=(V, E)
in O(log n) rounds in expectation and with high probability. Every node v∊V gets a color in
{1, ..., deg(v) + 1}

‣ P(v uncolored after T phases) ≤ (3/4)T

‣ Choose T = (c+1) log4/3 n = O(log n)

‣ P(v uncolored after T phases) ≤ 1 / nc+1

‣ P(some node uncolored after T phases) ≤ n · 1 / nc+1 = 1 / nc

Randomized Coloring

14

‣ Theorem: the discussed randomized coloring algorithm computes a valid coloring of G=(V, E)
in O(log n) rounds in expectation and with high probability. Every node v∊V gets a color in
{1, ..., deg(v) + 1}

‣ P(v uncolored after T phases) ≤ (3/4)T

‣ Choose T = (c+1) log4/3 n = O(log n)

‣ P(v uncolored after T phases) ≤ 1 / nc+1

‣ P(some node uncolored after T phases) ≤ n · 1 / nc+1 = 1 / nc

Randomized Coloring

14

Union Bound: P(A ∪ B) = P(A) + P(B) - P(A ⋂ B) ≤ P(A) + P(B)

Randomized MIS: Ideas

15

‣ Compute a (Δ+1)-coloring, then convert it into an MIS as seen in the last lecture:

Randomized MIS: Ideas

15

‣ Compute a (Δ+1)-coloring, then convert it into an MIS as seen in the last lecture:

• requires O(Δ + log n)

Randomized MIS: Ideas

15

‣ Compute a (Δ+1)-coloring, then convert it into an MIS as seen in the last lecture:

• requires O(Δ + log n)

‣ Compute a random ID assignment, then run the greedy algorithm seen in the last lecture:

Randomized MIS: Ideas

15

‣ Compute a (Δ+1)-coloring, then convert it into an MIS as seen in the last lecture:

• requires O(Δ + log n)

‣ Compute a random ID assignment, then run the greedy algorithm seen in the last lecture:

• requires O(log n), but its analysis is highly non-trivial

Randomized MIS: Ideas

15

‣ Compute a (Δ+1)-coloring, then convert it into an MIS as seen in the last lecture:

• requires O(Δ + log n)

‣ Compute a random ID assignment, then run the greedy algorithm seen in the last lecture:

• requires O(log n), but its analysis is highly non-trivial

‣ We are going to follow a similar approach. At each round:

Randomized MIS: Ideas

15

‣ Compute a (Δ+1)-coloring, then convert it into an MIS as seen in the last lecture:

• requires O(Δ + log n)

‣ Compute a random ID assignment, then run the greedy algorithm seen in the last lecture:

• requires O(log n), but its analysis is highly non-trivial

‣ We are going to follow a similar approach. At each round:

• Each node v picks a random number Rv ∊ [0,1]

Randomized MIS: Ideas

15

‣ Compute a (Δ+1)-coloring, then convert it into an MIS as seen in the last lecture:

• requires O(Δ + log n)

‣ Compute a random ID assignment, then run the greedy algorithm seen in the last lecture:

• requires O(log n), but its analysis is highly non-trivial

‣ We are going to follow a similar approach. At each round:

• Each node v picks a random number Rv ∊ [0,1]

• Node v joins the MIS if Rv < Ru for all u ∊ N(v)

Randomized MIS: Ideas

15

‣ Compute a (Δ+1)-coloring, then convert it into an MIS as seen in the last lecture:

• requires O(Δ + log n)

‣ Compute a random ID assignment, then run the greedy algorithm seen in the last lecture:

• requires O(log n), but its analysis is highly non-trivial

‣ We are going to follow a similar approach. At each round:

• Each node v picks a random number Rv ∊ [0,1]

• Node v joins the MIS if Rv < Ru for all u ∊ N(v)

Randomized MIS: Ideas

15

‣ Compute a (Δ+1)-coloring, then convert it into an MIS as seen in the last lecture:

• requires O(Δ + log n)

‣ Compute a random ID assignment, then run the greedy algorithm seen in the last lecture:

• requires O(log n), but its analysis is highly non-trivial

‣ We are going to follow a similar approach. At each round:

• Each node v picks a random number Rv ∊ [0,1]

• Node v joins the MIS if Rv < Ru for all u ∊ N(v)

Randomized MIS: Ideas

15

0.1

0.2

0.4

0.7

0.80.9

Randomized MIS: Luby's Algorithm

16

‣ At each round:

Randomized MIS: Luby's Algorithm

16

‣ At each round:

• Each node v picks a random number Rv ∊ [0,1]

Randomized MIS: Luby's Algorithm

16

‣ At each round:

• Each node v picks a random number Rv ∊ [0,1]

• Node v joins the MIS if Rv < Ru for all u ∊ N(v)

Randomized MIS: Luby's Algorithm

16

‣ At each round:

• Each node v picks a random number Rv ∊ [0,1]

• Node v joins the MIS if Rv < Ru for all u ∊ N(v)

• Remove MIS nodes and its neighbors

Randomized MIS: Luby's Algorithm

16

‣ At each round:

• Each node v picks a random number Rv ∊ [0,1]

• Node v joins the MIS if Rv < Ru for all u ∊ N(v)

• Remove MIS nodes and its neighbors

Randomized MIS: Luby's Algorithm

16

‣ At each round:

• Each node v picks a random number Rv ∊ [0,1]

• Node v joins the MIS if Rv < Ru for all u ∊ N(v)

• Remove MIS nodes and its neighbors

Randomized MIS: Luby's Algorithm

16

.2

.11

.8.7

.9

.6

.3

.15

.15

.1

.8
.13

.14

.1

.4

‣ At each round:

• Each node v picks a random number Rv ∊ [0,1]

• Node v joins the MIS if Rv < Ru for all u ∊ N(v)

• Remove MIS nodes and its neighbors

Randomized MIS: Luby's Algorithm

16

.2

.11

.8.7

.9

.6

.3

.15

.15

.1

.8
.13

.14

.1

.4

‣ At each round:

• Each node v picks a random number Rv ∊ [0,1]

• Node v joins the MIS if Rv < Ru for all u ∊ N(v)

• Remove MIS nodes and its neighbors

Randomized MIS: Luby's Algorithm

16

.2

.11

.8.7

.9

.6

.3

.15

.15

.1

.8
.13

.14

.1

.4

‣ At each round:

• Each node v picks a random number Rv ∊ [0,1]

• Node v joins the MIS if Rv < Ru for all u ∊ N(v)

• Remove MIS nodes and its neighbors

Randomized MIS: Luby's Algorithm

16

.4.7
.3

.2

‣ At each round:

• Each node v picks a random number Rv ∊ [0,1]

• Node v joins the MIS if Rv < Ru for all u ∊ N(v)

• Remove MIS nodes and its neighbors

Randomized MIS: Luby's Algorithm

16

.4.7
.3

.2

‣ At each round:

• Each node v picks a random number Rv ∊ [0,1]

• Node v joins the MIS if Rv < Ru for all u ∊ N(v)

• Remove MIS nodes and its neighbors

Randomized MIS: Luby's Algorithm

16

‣ At each round:

• Each node v picks a random number Rv ∊ [0,1]

• Node v joins the MIS if Rv < Ru for all u ∊ N(v)

• Remove MIS nodes and its neighbors

‣ P(v joins MIS) = 1 / (deg(v) +1)

Randomized MIS: Luby's Algorithm

17

‣ At each round:

• Each node v picks a random number Rv ∊ [0,1]

• Node v joins the MIS if Rv < Ru for all u ∊ N(v)

• Remove MIS nodes and its neighbors

‣ P(v joins MIS) = 1 / (deg(v) +1)

Randomized MIS: Luby's Algorithm

17

0.1

0.2

0.4

0.7

0.80.9

‣ At each round:

• Each node v picks a random number Rv ∊ [0,1]

• Node v joins the MIS if Rv < Ru for all u ∊ N(v)

• Remove MIS nodes and its neighbors

‣ P(v joins MIS) = 1 / (deg(v) +1)

‣ Can we prove that a constant fraction of nodes gets removed?

Randomized MIS: Luby's Algorithm

17

0.1

0.2

0.4

0.7

0.80.9

‣ At each round:

• Each node v picks a random number Rv ∊ [0,1]

• Node v joins the MIS if Rv < Ru for all u ∊ N(v)

• Remove MIS nodes and its neighbors

‣ P(v joins MIS) = 1 / (deg(v) +1)

‣ Can we prove that a constant fraction of nodes gets removed?

• No!

Randomized MIS: Luby's Algorithm

17

0.1

0.2

0.4

0.7

0.80.9

Randomized MIS: Luby's Algorithm

18

‣ Can we prove that a constant fraction of nodes gets removed?

Randomized MIS: Luby's Algorithm

18

‣ Can we prove that a constant fraction of nodes gets removed?

• No!

Randomized MIS: Luby's Algorithm

18

‣ Can we prove that a constant fraction of nodes gets removed?

• No!

Randomized MIS: Luby's Algorithm

18

‣ Can we prove that a constant fraction of nodes gets removed?

• No!

Randomized MIS: Luby's Algorithm

18

√n

‣ Can we prove that a constant fraction of nodes gets removed?

• No!

Randomized MIS: Luby's Algorithm

18

√n

n - √n

‣ Can we prove that a constant fraction of nodes gets removed?

• No!

Randomized MIS: Luby's Algorithm

18

√n

n - √n

u

‣ Can we prove that a constant fraction of nodes gets removed?

• No!

Randomized MIS: Luby's Algorithm

18

√n

n - √n

u

P(u joins MIS) ≈ 1 / n

‣ Can we prove that a constant fraction of nodes gets removed?

• No!

Randomized MIS: Luby's Algorithm

18

√n

n - √n

u

P(u joins MIS) ≈ 1 / n

P(some node of the right side joins MIS) ≈ 1 / √n

‣ Can we prove that a constant fraction of nodes gets removed?

• No!

Randomized MIS: Luby's Algorithm

18

√n

n - √n

u

P(u joins MIS) ≈ 1 / n

P(some node of the right side joins MIS) ≈ 1 / √n

with high probability, no node of the right side joins the MIS

‣ Can we prove that a constant fraction of nodes gets removed?

• No!

Randomized MIS: Luby's Algorithm

18

√n

n - √n

u

P(u joins MIS) ≈ 1 / n

P(some node of the right side joins MIS) ≈ 1 / √n

with high probability, no node of the right side joins the MIS

nodes of the left side only get removed if they join MIS

‣ Can we prove that a constant fraction of nodes gets removed?

• No!

Randomized MIS: Luby's Algorithm

18

√n

n - √n

u

P(u joins MIS) ≈ 1 / n

P(some node of the right side joins MIS) ≈ 1 / √n

with high probability, no node of the right side joins the MIS

nodes of the left side only get removed if they join MIS

v

‣ Can we prove that a constant fraction of nodes gets removed?

• No!

Randomized MIS: Luby's Algorithm

18

√n

n - √n

u

P(u joins MIS) ≈ 1 / n

P(some node of the right side joins MIS) ≈ 1 / √n

with high probability, no node of the right side joins the MIS

nodes of the left side only get removed if they join MIS

P(v joins MIS) ≈ 1 / √n

v

‣ Can we prove that a constant fraction of nodes gets removed?

• No!

Randomized MIS: Luby's Algorithm

18

√n

n - √n

u

P(u joins MIS) ≈ 1 / n

P(some node of the right side joins MIS) ≈ 1 / √n

with high probability, no node of the right side joins the MIS

nodes of the left side only get removed if they join MIS

P(v joins MIS) ≈ 1 / √n

only a 1/√n fraction of nodes join the MIS

v

Randomized MIS: Luby's Algorithm

19

‣ Lemma: in expectation, at least half of the remaining edges are removed.

Randomized MIS: Luby's Algorithm

19

‣ Lemma: in expectation, at least half of the remaining edges are removed.

‣ An edge {u, v} gets removed if either u or v gets removed

Randomized MIS: Luby's Algorithm

19

‣ Lemma: in expectation, at least half of the remaining edges are removed.

‣ An edge {u, v} gets removed if either u or v gets removed

Randomized MIS: Luby's Algorithm

19

‣ Lemma: in expectation, at least half of the remaining edges are removed.

‣ An edge {u, v} gets removed if either u or v gets removed

Randomized MIS: Luby's Algorithm

19

‣ Lemma: in expectation, at least half of the remaining edges are removed.

‣ An edge {u, v} gets removed if either u or v gets removed

Randomized MIS: Luby's Algorithm

19

‣ Lemma: in expectation, at least half of the remaining edges are removed.

‣ An edge {u, v} gets removed if either u or v gets removed

‣ For each edge {u, v}, we define events Ɛu,v and Ɛv,u

Randomized MIS: Luby's Algorithm

19

‣ Lemma: in expectation, at least half of the remaining edges are removed.

‣ An edge {u, v} gets removed if either u or v gets removed

‣ For each edge {u, v}, we define events Ɛu,v and Ɛv,u

• Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

Randomized MIS: Luby's Algorithm

19

‣ Lemma: in expectation, at least half of the remaining edges are removed.

‣ An edge {u, v} gets removed if either u or v gets removed

‣ For each edge {u, v}, we define events Ɛu,v and Ɛv,u

• Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

Randomized MIS: Luby's Algorithm

19

u v

‣ Lemma: in expectation, at least half of the remaining edges are removed.

‣ An edge {u, v} gets removed if either u or v gets removed

‣ For each edge {u, v}, we define events Ɛu,v and Ɛv,u

• Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

Randomized MIS: Luby's Algorithm

19

u v

Smallest

Ɛu,v is true

‣ Lemma: in expectation, at least half of the remaining edges are removed.

‣ An edge {u, v} gets removed if either u or v gets removed

‣ For each edge {u, v}, we define events Ɛu,v and Ɛv,u

• Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

Randomized MIS: Luby's Algorithm

19

u v

wSmallest

Ɛw,v is false

Ɛu,v is true

u v

w

‣ Lemma: in expectation, at least half of the remaining edges are removed.

‣ An edge {u, v} gets removed if either u or v gets removed

‣ For each edge {u, v}, we define events Ɛu,v and Ɛv,u

• Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

Randomized MIS: Luby's Algorithm

19

Smallest

Ɛw,v is false

Ɛu,v is true ⇒ all edges of v get removed "because of u"

Randomized MIS: Luby's Algorithm

20

u v

w

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

Randomized MIS: Luby's Algorithm

20

Smallest

u v

w

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

‣ Xu,v := deg(v) if Ɛu,v holds, 0 otherwise

Randomized MIS: Luby's Algorithm

20

Smallest

u v

w

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

‣ Xu,v := deg(v) if Ɛu,v holds, 0 otherwise

‣ X := ∑ (Xu,v + Xv,u)

Randomized MIS: Luby's Algorithm

20

Smallest

{u, v} ∊ E

u v

w

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

‣ Xu,v := deg(v) if Ɛu,v holds, 0 otherwise

‣ X := ∑ (Xu,v + Xv,u)

‣ Claim: X ≤ 2 · # deleted edges

Randomized MIS: Luby's Algorithm

20

Smallest

{u, v} ∊ E

u v

w

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

‣ Xu,v := deg(v) if Ɛu,v holds, 0 otherwise

‣ X := ∑ (Xu,v + Xv,u)

‣ Claim: X ≤ 2 · # deleted edges

• For each node v, at most one incident edges satisfies Ɛu,v

Randomized MIS: Luby's Algorithm

20

Smallest

{u, v} ∊ E

u v

w

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

‣ Xu,v := deg(v) if Ɛu,v holds, 0 otherwise

‣ X := ∑ (Xu,v + Xv,u)

‣ Claim: X ≤ 2 · # deleted edges

• For each node v, at most one incident edges satisfies Ɛu,v

Randomized MIS: Luby's Algorithm

20

Smallest

{u, v} ∊ E

Ɛu,v is true

u v

w

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

‣ Xu,v := deg(v) if Ɛu,v holds, 0 otherwise

‣ X := ∑ (Xu,v + Xv,u)

‣ Claim: X ≤ 2 · # deleted edges

• For each node v, at most one incident edges satisfies Ɛu,v

Randomized MIS: Luby's Algorithm

20

Smallest

{u, v} ∊ E

Ɛu,v is true

Xu,v is deg(v)

u v

w

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

‣ Xu,v := deg(v) if Ɛu,v holds, 0 otherwise

‣ X := ∑ (Xu,v + Xv,u)

‣ Claim: X ≤ 2 · # deleted edges

• For each node v, at most one incident edges satisfies Ɛu,v

Randomized MIS: Luby's Algorithm

20

Smallest

{u, v} ∊ E Ɛw,v is false

Ɛu,v is true

Xu,v is deg(v)

u v

w

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

‣ Xu,v := deg(v) if Ɛu,v holds, 0 otherwise

‣ X := ∑ (Xu,v + Xv,u)

‣ Claim: X ≤ 2 · # deleted edges

• For each node v, at most one incident edges satisfies Ɛu,v

Randomized MIS: Luby's Algorithm

20

Smallest

{u, v} ∊ E Ɛw,v is false

Xw,v is 0

Ɛu,v is true

Xu,v is deg(v)

u v

w

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

‣ Xu,v := deg(v) if Ɛu,v holds, 0 otherwise

‣ X := ∑ (Xu,v + Xv,u)

‣ Claim: X ≤ 2 · # deleted edges

• For each node v, at most one incident edges satisfies Ɛu,v

• so every edge incident to v is counted once, for v

Randomized MIS: Luby's Algorithm

20

Smallest

{u, v} ∊ E Ɛw,v is false

Xw,v is 0

Ɛu,v is true

Xu,v is deg(v)

u v

w

x

z

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

‣ Xu,v := deg(v) if Ɛu,v holds, 0 otherwise

‣ X := ∑ (Xu,v + Xv,u)

‣ Claim: X ≤ 2 · # deleted edges

• For each node v, at most one incident edges satisfies Ɛu,v

• so every edge incident to v is counted once, for v

Randomized MIS: Luby's Algorithm

20

Smallest

{u, v} ∊ E

u v

w

x

z

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

‣ Xu,v := deg(v) if Ɛu,v holds, 0 otherwise

‣ X := ∑ (Xu,v + Xv,u)

‣ Claim: X ≤ 2 · # deleted edges

• For each node v, at most one incident edges satisfies Ɛu,v

• so every edge incident to v is counted once, for v

Randomized MIS: Luby's Algorithm

20

Smallest

{u, v} ∊ E

Smallest

u v

w

x

z

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

‣ Xu,v := deg(v) if Ɛu,v holds, 0 otherwise

‣ X := ∑ (Xu,v + Xv,u)

‣ Claim: X ≤ 2 · # deleted edges

• For each node v, at most one incident edges satisfies Ɛu,v

• so every edge incident to v is counted once, for v

• every edge can be counted once, for each endpoint

Randomized MIS: Luby's Algorithm

20

Smallest

{u, v} ∊ E

Smallest

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

‣ Xu,v := deg(v) if Ɛu,v holds, 0 otherwise

‣ X := ∑ (Xu,v + Xv,u)

‣ X ≤ 2 · # deleted edges

u v

w

Randomized MIS: Luby's Algorithm

21

Smallest

{u, v} ∊ E

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

‣ Xu,v := deg(v) if Ɛu,v holds, 0 otherwise

‣ X := ∑ (Xu,v + Xv,u)

‣ X ≤ 2 · # deleted edges

‣ Claim: 𝔼[X] ≥ |E|

u v

w

Randomized MIS: Luby's Algorithm

21

Smallest

{u, v} ∊ E

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

‣ Xu,v := deg(v) if Ɛu,v holds, 0 otherwise

‣ X := ∑ (Xu,v + Xv,u)

‣ X ≤ 2 · # deleted edges

‣ Claim: 𝔼[X] ≥ |E|

• 𝔼[Xu,v] =

u v

w

Randomized MIS: Luby's Algorithm

21

Smallest

{u, v} ∊ E

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

‣ Xu,v := deg(v) if Ɛu,v holds, 0 otherwise

‣ X := ∑ (Xu,v + Xv,u)

‣ X ≤ 2 · # deleted edges

‣ Claim: 𝔼[X] ≥ |E|

• 𝔼[Xu,v] =

u v

w

Randomized MIS: Luby's Algorithm

21

Smallest

{u, v} ∊ E

deg(v) · P(Ɛu,v)

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

‣ Xu,v := deg(v) if Ɛu,v holds, 0 otherwise

‣ X := ∑ (Xu,v + Xv,u)

‣ X ≤ 2 · # deleted edges

‣ Claim: 𝔼[X] ≥ |E|

• 𝔼[Xu,v] =

u v

w

Randomized MIS: Luby's Algorithm

21

Smallest

{u, v} ∊ E

deg(v) · P(Ɛu,v)

At most deg(u) + deg(v) nodes

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

‣ Xu,v := deg(v) if Ɛu,v holds, 0 otherwise

‣ X := ∑ (Xu,v + Xv,u)

‣ X ≤ 2 · # deleted edges

‣ Claim: 𝔼[X] ≥ |E|

• 𝔼[Xu,v] =

u v

w

Randomized MIS: Luby's Algorithm

21

Smallest

{u, v} ∊ E

deg(v) · P(Ɛu,v)

At most deg(u) + deg(v) nodes

≥ deg(v) · 1 / (deg(u) + deg(v))

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

‣ Xu,v := deg(v) if Ɛu,v holds, 0 otherwise

‣ X := ∑ (Xu,v + Xv,u)

‣ X ≤ 2 · # deleted edges

‣ Claim: 𝔼[X] ≥ |E|

• 𝔼[Xu,v] =

u v

w

Randomized MIS: Luby's Algorithm

21

Smallest

{u, v} ∊ E

deg(v) · P(Ɛu,v)

At most deg(u) + deg(v) nodes

≥ deg(v) · 1 / (deg(u) + deg(v)) = deg(v) / (deg(u) + deg(v))

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

‣ Xu,v := deg(v) if Ɛu,v holds, 0 otherwise

‣ X := ∑ (Xu,v + Xv,u)

‣ X ≤ 2 · # deleted edges

‣ Claim: 𝔼[X] ≥ |E|

• 𝔼[Xu,v] =

• 𝔼[X] =

u v

w

Randomized MIS: Luby's Algorithm

21

Smallest

{u, v} ∊ E

deg(v) · P(Ɛu,v)

At most deg(u) + deg(v) nodes

≥ deg(v) · 1 / (deg(u) + deg(v)) = deg(v) / (deg(u) + deg(v))

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

‣ Xu,v := deg(v) if Ɛu,v holds, 0 otherwise

‣ X := ∑ (Xu,v + Xv,u)

‣ X ≤ 2 · # deleted edges

‣ Claim: 𝔼[X] ≥ |E|

• 𝔼[Xu,v] =

• 𝔼[X] =

u v

w

Randomized MIS: Luby's Algorithm

21

Smallest

{u, v} ∊ E

deg(v) · P(Ɛu,v)

At most deg(u) + deg(v) nodes

≥ deg(v) · 1 / (deg(u) + deg(v)) = deg(v) / (deg(u) + deg(v))

𝔼[∑(Xu,v + Xv,u)]
{u,v}∊E

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

‣ Xu,v := deg(v) if Ɛu,v holds, 0 otherwise

‣ X := ∑ (Xu,v + Xv,u)

‣ X ≤ 2 · # deleted edges

‣ Claim: 𝔼[X] ≥ |E|

• 𝔼[Xu,v] =

• 𝔼[X] =

u v

w

Randomized MIS: Luby's Algorithm

21

Smallest

{u, v} ∊ E

deg(v) · P(Ɛu,v)

At most deg(u) + deg(v) nodes

≥ deg(v) · 1 / (deg(u) + deg(v)) = deg(v) / (deg(u) + deg(v))

Linearity of expectation: 𝔼[X + Y] = 𝔼[X] + 𝔼[Y]

𝔼[∑(Xu,v + Xv,u)]
{u,v}∊E

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

‣ Xu,v := deg(v) if Ɛu,v holds, 0 otherwise

‣ X := ∑ (Xu,v + Xv,u)

‣ X ≤ 2 · # deleted edges

‣ Claim: 𝔼[X] ≥ |E|

• 𝔼[Xu,v] =

• 𝔼[X] =

u v

w

Randomized MIS: Luby's Algorithm

21

Smallest

{u, v} ∊ E

deg(v) · P(Ɛu,v)

At most deg(u) + deg(v) nodes

≥ deg(v) · 1 / (deg(u) + deg(v)) = deg(v) / (deg(u) + deg(v))

Linearity of expectation: 𝔼[X + Y] = 𝔼[X] + 𝔼[Y]

𝔼[∑(Xu,v + Xv,u)]
{u,v}∊E

= ∑(𝔼[Xu,v] + 𝔼[Xv,u])
{u,v}∊E

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

‣ Xu,v := deg(v) if Ɛu,v holds, 0 otherwise

‣ X := ∑ (Xu,v + Xv,u)

‣ X ≤ 2 · # deleted edges

‣ Claim: 𝔼[X] ≥ |E|

• 𝔼[Xu,v] =

• 𝔼[X] =

u v

w

Randomized MIS: Luby's Algorithm

21

Smallest

{u, v} ∊ E

deg(v) · P(Ɛu,v)

At most deg(u) + deg(v) nodes

≥ deg(v) · 1 / (deg(u) + deg(v)) = deg(v) / (deg(u) + deg(v))

Linearity of expectation: 𝔼[X + Y] = 𝔼[X] + 𝔼[Y]

𝔼[∑(Xu,v + Xv,u)]
{u,v}∊E

= ∑(𝔼[Xu,v] + 𝔼[Xv,u])
{u,v}∊E

≥ ∑ 1
{u,v}∊E

‣ Ɛu,v ⇔ ∀w ∊ N(u) ∪ N(v) \ {u} : Xu < Xw

‣ Xu,v := deg(v) if Ɛu,v holds, 0 otherwise

‣ X := ∑ (Xu,v + Xv,u)

‣ X ≤ 2 · # deleted edges

‣ Claim: 𝔼[X] ≥ |E|

• 𝔼[Xu,v] =

• 𝔼[X] =

u v

w

Randomized MIS: Luby's Algorithm

21

Smallest

{u, v} ∊ E

deg(v) · P(Ɛu,v)

At most deg(u) + deg(v) nodes

≥ deg(v) · 1 / (deg(u) + deg(v)) = deg(v) / (deg(u) + deg(v))

Linearity of expectation: 𝔼[X + Y] = 𝔼[X] + 𝔼[Y]

𝔼[∑(Xu,v + Xv,u)]
{u,v}∊E

= ∑(𝔼[Xu,v] + 𝔼[Xv,u])
{u,v}∊E

≥ ∑ 1
{u,v}∊E

= |E|

‣ Lemma: in expectation, at least half of the remaining edges are removed.

Randomized MIS: Luby's Algorithm

22

‣ Lemma: in expectation, at least half of the remaining edges are removed.

‣ X ≤ 2 · # deleted edges

Randomized MIS: Luby's Algorithm

22

‣ Lemma: in expectation, at least half of the remaining edges are removed.

‣ X ≤ 2 · # deleted edges

‣ 𝔼[X] ≥ |E|

Randomized MIS: Luby's Algorithm

22

‣ Lemma: in expectation, at least half of the remaining edges are removed.

‣ X ≤ 2 · # deleted edges

‣ 𝔼[X] ≥ |E|

‣ # deleted edges ≥ X / 2

Randomized MIS: Luby's Algorithm

22

‣ Lemma: in expectation, at least half of the remaining edges are removed.

‣ X ≤ 2 · # deleted edges

‣ 𝔼[X] ≥ |E|

‣ # deleted edges ≥ X / 2

‣ 𝔼[# deleted edges] ≥ 𝔼[X / 2] ≥ |E| / 2

Randomized MIS: Luby's Algorithm

22

‣ Lemma: in expectation, at least half of the remaining edges are removed.

Randomized MIS: Luby's Algorithm

23

‣ Lemma: in expectation, at least half of the remaining edges are removed.

‣ Theorem: Luby's randomized MIS algorithm computes an MIS in time O(log n) in expectation
and with high probability.

Randomized MIS: Luby's Algorithm

23

‣ Lemma: in expectation, at least half of the remaining edges are removed.

‣ Theorem: Luby's randomized MIS algorithm computes an MIS in time O(log n) in expectation
and with high probability.

Randomized MIS: Luby's Algorithm

23

‣ Lemma: in expectation, at least half of the remaining edges are removed.

‣ Theorem: Luby's randomized MIS algorithm computes an MIS in time O(log n) in expectation
and with high probability.

• Markov's inequality: P(X ≥ a) ≤ 𝔼[X] / a

Randomized MIS: Luby's Algorithm

23

‣ Lemma: in expectation, at least half of the remaining edges are removed.

‣ Theorem: Luby's randomized MIS algorithm computes an MIS in time O(log n) in expectation
and with high probability.

• Markov's inequality: P(X ≥ a) ≤ 𝔼[X] / a

• What is the probability that the number of remaining edges is at least a fraction 3/4?

Randomized MIS: Luby's Algorithm

23

‣ Lemma: in expectation, at least half of the remaining edges are removed.

‣ Theorem: Luby's randomized MIS algorithm computes an MIS in time O(log n) in expectation
and with high probability.

• Markov's inequality: P(X ≥ a) ≤ 𝔼[X] / a

• What is the probability that the number of remaining edges is at least a fraction 3/4?

• By Markov: at most 2/3

Randomized MIS: Luby's Algorithm

23

‣ Lemma: in expectation, at least half of the remaining edges are removed.

‣ Theorem: Luby's randomized MIS algorithm computes an MIS in time O(log n) in expectation
and with high probability.

• Markov's inequality: P(X ≥ a) ≤ 𝔼[X] / a

• What is the probability that the number of remaining edges is at least a fraction 3/4?

• By Markov: at most 2/3

• Hence, with probability at least 1/3 we remove of at least a fraction 1/4 of edges.

Randomized MIS: Luby's Algorithm

23

‣ Lemma: in expectation, at least half of the remaining edges are removed.

‣ Theorem: Luby's randomized MIS algorithm computes an MIS in time O(log n) in expectation
and with high probability.

• Markov's inequality: P(X ≥ a) ≤ 𝔼[X] / a

• What is the probability that the number of remaining edges is at least a fraction 3/4?

• By Markov: at most 2/3

• Hence, with probability at least 1/3 we remove of at least a fraction 1/4 of edges.

Randomized MIS: Luby's Algorithm

23

From MIS to (Δ+1)-coloring

24

‣ Assume we want to compute a coloring on
graph G

From MIS to (Δ+1)-coloring

24

a c

b d

G

‣ Assume we want to compute a coloring on
graph G

‣ We transform G into a new virtual graph H

From MIS to (Δ+1)-coloring

24

a c

b d

G

‣ Assume we want to compute a coloring on
graph G

‣ We transform G into a new virtual graph H

‣ that can be simulated on G

From MIS to (Δ+1)-coloring

24

a c

b d

G

‣ Assume we want to compute a coloring on
graph G

‣ We transform G into a new virtual graph H

‣ that can be simulated on G

1. Create Δ+1 copies of G

From MIS to (Δ+1)-coloring

24

a c

b d

G

Ha1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

d1

d2

d3

d4

‣ Assume we want to compute a coloring on
graph G

‣ We transform G into a new virtual graph H

‣ that can be simulated on G

1. Create Δ+1 copies of G

2. Connect corresponding nodes in the copies
to a clique

From MIS to (Δ+1)-coloring

24

a c

b d

G

Ha1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

d1

d2

d3

d4

‣ Assume we want to compute a coloring on
graph G

‣ We transform G into a new virtual graph H

‣ that can be simulated on G

1. Create Δ+1 copies of G

2. Connect corresponding nodes in the copies
to a clique

From MIS to (Δ+1)-coloring

24

a c

b d

G

Ha1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

d1

d2

d3

d4

Simulated by a

‣ Assume we want to compute a coloring on
graph G

‣ We transform G into a new virtual graph H

‣ that can be simulated on G

1. Create Δ+1 copies of G

2. Connect corresponding nodes in the copies
to a clique

3. Compute MIS on H

From MIS to (Δ+1)-coloring

24

a c

b d

G

Ha1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

d1

d2

d3

d4

From MIS to (Δ+1)-coloring

25

a1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

d1

d2

d3

d4

a c

b d

G

H

‣ Claim: the MIS contains exactly one node from each column

From MIS to (Δ+1)-coloring

25

a1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

d1

d2

d3

d4

a c

b d

G

H

‣ Claim: the MIS contains exactly one node from each column

• At most 1: each column forms a clique

From MIS to (Δ+1)-coloring

25

a1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

d1

d2

d3

d4

a c

b d

G

H

‣ Claim: the MIS contains exactly one node from each column

• At most 1: each column forms a clique

• At least 1: each neighbor in G can cover at most 1 copy.
But there are at most Δ neighbors in G, and Δ+1 copies.
So at least one node for each column cannot be a
neighbor of MIS nodes of other columns.

From MIS to (Δ+1)-coloring

25

a1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

d1

d2

d3

d4

a c

b d

G

H

‣ Claim: the MIS contains exactly one node from each column

• At most 1: each column forms a clique

• At least 1: each neighbor in G can cover at most 1 copy.
But there are at most Δ neighbors in G, and Δ+1 copies.
So at least one node for each column cannot be a
neighbor of MIS nodes of other columns.

‣ Algorithm: if a column node vi is in the MIS, node v picks
color i

From MIS to (Δ+1)-coloring

25

a1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

d1

d2

d3

d4

a c

b d

G

H

From MIS to (Δ+1)-coloring

26

‣ Theorem: together with the O(log n) randomized MIS algorithm, this reduction gives an
alternative way to compute a Δ+1 coloring in O(log n) rounds.

From MIS to (Δ+1)-coloring

26

‣ Theorem: together with the O(log n) randomized MIS algorithm, this reduction gives an
alternative way to compute a Δ+1 coloring in O(log n) rounds.

‣ Remark: this construction can be modified to assign colors in {1, ..., deg(v)+1}:

From MIS to (Δ+1)-coloring

26

‣ Theorem: together with the O(log n) randomized MIS algorithm, this reduction gives an
alternative way to compute a Δ+1 coloring in O(log n) rounds.

‣ Remark: this construction can be modified to assign colors in {1, ..., deg(v)+1}:

• Put deg(v)+1 copies of v instead of Δ+1

From MIS to (Δ+1)-coloring

26

Summary

27

‣ MIS and Δ+1 coloring (randomized): O(log n) [Luby '86]

Summary

27

‣ MIS and Δ+1 coloring (randomized): O(log n) [Luby '86]

‣ Best deterministic algorithms:

Summary

27

‣ MIS and Δ+1 coloring (randomized): O(log n) [Luby '86]

‣ Best deterministic algorithms:

• MIS: O(logc n) rounds [Rozhoň, Ghaffari, 2019]

Summary

27

‣ MIS and Δ+1 coloring (randomized): O(log n) [Luby '86]

‣ Best deterministic algorithms:

• MIS: O(logc n) rounds [Rozhoň, Ghaffari, 2019]

• Δ+1 coloring: O(log2 n log Δ) rounds [Kuhn, Ghaffari, 2020]

Summary

27

‣ MIS and Δ+1 coloring (randomized): O(log n) [Luby '86]

‣ Best deterministic algorithms:

• MIS: O(logc n) rounds [Rozhoň, Ghaffari, 2019]

• Δ+1 coloring: O(log2 n log Δ) rounds [Kuhn, Ghaffari, 2020]

‣ Best randomized algorithms:

Summary

27

‣ MIS and Δ+1 coloring (randomized): O(log n) [Luby '86]

‣ Best deterministic algorithms:

• MIS: O(logc n) rounds [Rozhoň, Ghaffari, 2019]

• Δ+1 coloring: O(log2 n log Δ) rounds [Kuhn, Ghaffari, 2020]

‣ Best randomized algorithms:

• MIS: O(log Δ + logc log n) [Ghaffari '16]

Summary

27

‣ MIS and Δ+1 coloring (randomized): O(log n) [Luby '86]

‣ Best deterministic algorithms:

• MIS: O(logc n) rounds [Rozhoň, Ghaffari, 2019]

• Δ+1 coloring: O(log2 n log Δ) rounds [Kuhn, Ghaffari, 2020]

‣ Best randomized algorithms:

• MIS: O(log Δ + logc log n) [Ghaffari '16]

• Δ+1 coloring: O(logc log n) [Chang, Li, Pettie '18]

Summary

27

‣ MIS and Δ+1 coloring (randomized): O(log n) [Luby '86]

‣ Best deterministic algorithms:

• MIS: O(logc n) rounds [Rozhoň, Ghaffari, 2019]

• Δ+1 coloring: O(log2 n log Δ) rounds [Kuhn, Ghaffari, 2020]

‣ Best randomized algorithms:

• MIS: O(log Δ + logc log n) [Ghaffari '16]

• Δ+1 coloring: O(logc log n) [Chang, Li, Pettie '18]

‣ Best lower bounds:

Summary

27

‣ MIS and Δ+1 coloring (randomized): O(log n) [Luby '86]

‣ Best deterministic algorithms:

• MIS: O(logc n) rounds [Rozhoň, Ghaffari, 2019]

• Δ+1 coloring: O(log2 n log Δ) rounds [Kuhn, Ghaffari, 2020]

‣ Best randomized algorithms:

• MIS: O(log Δ + logc log n) [Ghaffari '16]

• Δ+1 coloring: O(logc log n) [Chang, Li, Pettie '18]

‣ Best lower bounds:

• Δ+1 coloring: Ω(log* n) [Linial '87]

Summary

27

‣ MIS and Δ+1 coloring (randomized): O(log n) [Luby '86]

‣ Best deterministic algorithms:

• MIS: O(logc n) rounds [Rozhoň, Ghaffari, 2019]

• Δ+1 coloring: O(log2 n log Δ) rounds [Kuhn, Ghaffari, 2020]

‣ Best randomized algorithms:

• MIS: O(log Δ + logc log n) [Ghaffari '16]

• Δ+1 coloring: O(logc log n) [Chang, Li, Pettie '18]

‣ Best lower bounds:

• Δ+1 coloring: Ω(log* n) [Linial '87]

• MIS (randomized): Ω(√(log n / log log n)) [Kuhn, Moscibroda, Wattenhofer '04]

Summary

27

‣ MIS and Δ+1 coloring (randomized): O(log n) [Luby '86]

‣ Best deterministic algorithms:

• MIS: O(logc n) rounds [Rozhoň, Ghaffari, 2019]

• Δ+1 coloring: O(log2 n log Δ) rounds [Kuhn, Ghaffari, 2020]

‣ Best randomized algorithms:

• MIS: O(log Δ + logc log n) [Ghaffari '16]

• Δ+1 coloring: O(logc log n) [Chang, Li, Pettie '18]

‣ Best lower bounds:

• Δ+1 coloring: Ω(log* n) [Linial '87]

• MIS (randomized): Ω(√(log n / log log n)) [Kuhn, Moscibroda, Wattenhofer '04]

• MIS (deterministic): Ω(log n / log log n) [Balliu, Brandt, Hirvonen, Olivetti, Rabie, Suomela '19]

Summary

27

‣ MIS and Δ+1 coloring (randomized): O(log n) [Luby '86]

‣ Best deterministic algorithms:

• MIS: O(logc n) rounds [Rozhoň, Ghaffari, 2019]

• Δ+1 coloring: O(log2 n log Δ) rounds [Kuhn, Ghaffari, 2020]

‣ Best randomized algorithms:

• MIS: O(log Δ + logc log n) [Ghaffari '16]

• Δ+1 coloring: O(logc log n) [Chang, Li, Pettie '18]

‣ Best lower bounds:

• Δ+1 coloring: Ω(log* n) [Linial '87]

• MIS (randomized): Ω(√(log n / log log n)) [Kuhn, Moscibroda, Wattenhofer '04]

• MIS (deterministic): Ω(log n / log log n) [Balliu, Brandt, Hirvonen, Olivetti, Rabie, Suomela '19]

• MIS (deterministic, on trees):

Summary

27

‣ MIS and Δ+1 coloring (randomized): O(log n) [Luby '86]

‣ Best deterministic algorithms:

• MIS: O(logc n) rounds [Rozhoň, Ghaffari, 2019]

• Δ+1 coloring: O(log2 n log Δ) rounds [Kuhn, Ghaffari, 2020]

‣ Best randomized algorithms:

• MIS: O(log Δ + logc log n) [Ghaffari '16]

• Δ+1 coloring: O(logc log n) [Chang, Li, Pettie '18]

‣ Best lower bounds:

• Δ+1 coloring: Ω(log* n) [Linial '87]

• MIS (randomized): Ω(√(log n / log log n)) [Kuhn, Moscibroda, Wattenhofer '04]

• MIS (deterministic): Ω(log n / log log n) [Balliu, Brandt, Hirvonen, Olivetti, Rabie, Suomela '19]

• MIS (deterministic, on trees):

• O(log n / log log n) [Barenboim, Elkin '08]

Summary

27

‣ MIS and Δ+1 coloring (randomized): O(log n) [Luby '86]

‣ Best deterministic algorithms:

• MIS: O(logc n) rounds [Rozhoň, Ghaffari, 2019]

• Δ+1 coloring: O(log2 n log Δ) rounds [Kuhn, Ghaffari, 2020]

‣ Best randomized algorithms:

• MIS: O(log Δ + logc log n) [Ghaffari '16]

• Δ+1 coloring: O(logc log n) [Chang, Li, Pettie '18]

‣ Best lower bounds:

• Δ+1 coloring: Ω(log* n) [Linial '87]

• MIS (randomized): Ω(√(log n / log log n)) [Kuhn, Moscibroda, Wattenhofer '04]

• MIS (deterministic): Ω(log n / log log n) [Balliu, Brandt, Hirvonen, Olivetti, Rabie, Suomela '19]

• MIS (deterministic, on trees):

• O(log n / log log n) [Barenboim, Elkin '08]

• Ω(log n / log log n) [Balliu, Brandt, Kuhn, Olivetti '21] <- result from 3 weeks ago!

Summary

27

