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Objective: properly color the nodes with = A + 1 colors
» A: maximum degree

» A + 1: what a simple sequential
greedy algorithm achieves
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Objective: compute a maximal independent set (MIS)
» Independent Set: set of pairwise non-adjacent nodes
» Maximal: the set cannot be extended
» Easily solvable with a greedy algorithm Maximal Independent Set

» The Maximum Independent Set is a
different (much harder) problem
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Summary From Last Time

» Coloring trees
« 2-coloring is solvable in trees, but requires a lot of time (Q(D))
» 3-coloring in rooted trees can be solved in O(log* n) time
» 3-coloring in unrooted trees can be solved in O(log n) time
» Coloring general graphs
» 32-coloring in graphs with max degree A can be solved in O(log* n) time
* (A+1)-coloring or MIS in graphs with max degree A can be solved in O(32+ log* n) time
- Fastif A =0(17)
- It can be significantly improved
» Today

* Randomized algorithms for (A+1)-coloring and MIS: O(log n) time in general graphs!
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» Finding upper and lower bounds for (1-x)y

p T-x = exforallxeR
» 1-x = 4xforallxe|0, 1/2]
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» Problem:

* assign to each node a color from {1, ..., A + 1}
» Simple idea:

* just pick arandom color

* if no neighbor picked the same color, keep the color Q

o otherwise, repeat
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Random Colors

» Lemma: If each node v « V of a graph G = (V,E) independently picks a uniformly random color X, from
{1, ..., A+1}, for each node v < V, the probability that X, = X, for all neighbors u of v is at least 1/e.

) P(Xv=xu)
=1/(A+1)

» P( X, = Xy) Q

=1-1/(A+1)

» P( X, has a color different from all neighbors)

=(1-1/(A+1))A

(1-1/(x+1))x>1/eforallx>0
>1/e
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Extending an Existing Coloring

» After the first round, some nodes already picked a color (they
were lucky with probability > 1/e) 3® (4)

» Inthe second round, each node picks a random color

* |t does not make sense to try colors already picked by the (5.6

neighbors (O

{5,6}
» Is it still true that for every possible color X,, the probability
that X, = X, for all neighbors u of v is at least 1/e? 56} {1,2,3,4,5¢
()
* No! Some colors are better than others. {56 (56)
(4
©) (4
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» Problem:

eachnodev < Vin G = (V, E) must get a color from {1, ..., deg(v) + 1}

» Vec:nodes v e Vec Valready have a color x, such that G[Vc¢| is properly colored ‘

Subgraph induced by nodes in V¢ In Ve
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Let's make the problem harder and more precise

Problem:

 eachnodeveVinG=(V, E) must getacolorfrom{1, ..., deg(v) + 1}
Vc:nodes v « Ve ¢ Valready have a color x, such that G[V¢] is properly colored
Vu =V \ Vc: set of uncolored nodes

Fv: set of free colors of node v. Fy, = {1, ..., deg(v)+1} \ UUGVC o NO) { xu}

Algorithm:
* Each node v picks a color uniformly at random from F,

 FEach node v « Vykeeps the color if no neighbor in Vy picked the same color

in Vy

In V¢



Extending an Existing Coloring



Extending an Existing Coloring

» Nx(v): uncolored neighbors u of v for which x < F,

10



Extending an Existing Coloring

» Nx(v): uncolored neighbors u of v for which x « F, « Neighbors of v that could pick color x

10



Extending an Existing Coloring

» Nx(v): uncolored neighbors u of v for which x « F, « Neighbors of v that could pick color x

» weight wx(v) of acolorx < Fyforve V. wy(v) = z 1/ |Ful
uGNx(V)

10



Extending an Existing Coloring

» Nx(v): uncolored neighbors u of v for which x « F, « Neighbors of v that could pick color x

» weight wx(v) of acolorx < Fyforve V. wy(v) = z 1/ |Ful

UeNy(v) & For each neighbor,
sum the probability that it takes color x

10



Extending an Existing Coloring

» Nx(v): uncolored neighbors u of v for which x « F, « Neighbors of v that could pick color x

» weight wx(v) of acolorx < Fyforve V. wy(v) = z 1/ [Fdl

UeNy(v) & For each neighbor,
sum the probability that it takes color x

» Intuition: wy(v) is not the probability that some neighbor of v picks color x,
but intuitively it corresponds to that

10



Extending an Existing Coloring

» Nx(v): uncolored neighbors u of v for which x « F, « Neighbors of v that could pick color x

» weight wx(v) of acolorx < Fyforve V. wy(v) = z 1/ [Fdl

UeNy(v) & For each neighbor,
sum the probability that it takes color x

» Intuition: wy(v) is not the probability that some neighbor of v picks color x,
but intuitively it corresponds to that

> Lemma: > Wi(v) = [N(V) n Vyl

XEFV

10



Extending an Existing Coloring

» Nx(v): uncolored neighbors u of v for which x « F, « Neighbors of v that could pick color x

» weight wx(v) of acolorx e Fy forve Vy:  wy(v) = z 1/ |Fyl

UeNy(v) & For each neighbor,
sum the probability that it takes color x

» Intuition: wy(v) is not the probability that some neighbor of v picks color x,
but intuitively it corresponds to that

> Lemma: > Wi(v) = [N(V) n Vyl

XGFV

The sum of the weights is at most
the number of uncolored neighbors

10



Extending an Existing Coloring

» Nx(v): uncolored neighbors u of v for which x « F, « Neighbors of v that could pick color x

» weight wx(v) of acolorx < Fyforve V. wy(v) = z 1/ [Fdl

UeNy(v) & For each neighbor,
sum the probability that it takes color x

» Intuition: wy(v) is not the probability that some neighbor of v picks color x,
but intuitively it corresponds to that

> Lemma: Z wx(v) = [N(v) n Vul z wx(V)

xeFV XGFV

The sum of the weights is at most
the number of uncolored neighbors

10



Extending an Existing Coloring

» Nx(v): uncolored neighbors u of v for which x « F, « Neighbors of v that could pick color x

» weight wx(v) of acolorx < Fyforve V. wy(v) = z 1/ [Fdl

UeNy(v) & For each neighbor,
sum the probability that it takes color x

» Intuition: wy(v) is not the probability that some neighbor of v picks color x,
but intuitively it corresponds to that

> Lemma: Z wx(v) = [IN(v) n Vy z wx(V) = z z 1/ |Fdl

X eFy X eFy XeFy UENx(V)

The sum of the weights is at most
the number of uncolored neighbors

10



Extending an Existing Coloring

» Nx(v): uncolored neighbors u of v for which x « F, « Neighbors of v that could pick color x

» weight wx(v) of acolorx < Fyforve V. wy(v) = z 1/ [Fdl

UeNy(v) & For each neighbor,
sum the probability that it takes color x

» Intuition: wy(v) is not the probability that some neighbor of v picks color x,
but intuitively it corresponds to that

> Lemma: Z wx(v) = [N(v) n Vul z wx(V) = z z 1/ |Fy|
X ¢ Fy X e Fy XeFy ueNx(v)

The sum of the weights is at most — Z z 1/ |F4|

the number of uncolored neighbors ue<NWV)N"Vu xeFyn Fu

10



Extending an Existing Coloring

» Nx(v): uncolored neighbors u of v for which x « F, « Neighbors of v that could pick color x

» weight wx(v) of acolorx < Fyforve V. wy(v) = z 1/ [Fdl

UeNy(v) & For each neighbor,
sum the probability that it takes color x

» Intuition: wy(v) is not the probability that some neighbor of v picks color x,
but intuitively it corresponds to that

> Lemma: Z wx(v) = [IN(v) n Vy z wx(V) = z z 1/ |Fdl

X eFy X € Fy X eFy UENx(V)
The sum of the weights is at most — z z 1/ |Fd|
the number of uncolored neighbors ueN(V)N\Vu xeFyn Fu

*

Uncolored neighbors
10



Extending an Existing Coloring

» Nx(v): uncolored neighbors u of v for which x « F, « Neighbors of v that could pick color x

» weight wx(v) of acolorx < Fyforve V. wy(v) = z 1/ [Fdl

UeNy(v) & For each neighbor,
sum the probability that it takes color x

» Intuition: wy(v) is not the probability that some neighbor of v picks color x,
but intuitively it corresponds to that

> Lemma: Z wx(v) = [IN(v) n Vy z wx(V) = z z 1/ |Fdl

X eFy X € Fy X eFy UENx(V)
The sum of the weights is at most — z z 1/ |Fd|
the number of uncolored neighbors ueN(V)N\Vu xeFyn Fu

£

Uncolored neighbors Common colors
10



Extending an Existing Coloring

» Nx(v): uncolored neighbors u of v for which x « F, « Neighbors of v that could pick color x

» weight wx(v) of acolorx < Fyforve V. wy(v) = z 1/ [Fdl

UeNy(v) & For each neighbor,
sum the probability that it takes color x

» Intuition: wy(v) is not the probability that some neighbor of v picks color x,
but intuitively it corresponds to that

> Lemma: Z wx(v) = [IN(v) n Vy z wx(V) = z z 1/ |Fdl

X eFy X e Fy X eFy UGNx(V)
The sum of the weights is at most — Z z 1/|Fd = Z IFv n Ful / |Ful
the number of uncolored neighbors u<N(V)N"Vu X< Fyn Fy

e N(v)nVy
£

Uncolored neighbors Common colors
10



Extending an Existing Coloring

» Nx(v): uncolored neighbors u of v for which x « F, « Neighbors of v that could pick color x

» weight wx(v) of acolorx < Fyforve V. wy(v) = z 1/ [Fdl

UeNy(v) & For each neighbor,
sum the probability that it takes color x

» Intuition: wy(v) is not the probability that some neighbor of v picks color x,
but intuitively it corresponds to that

> Lemma: Z wx(v) = [IN(v) n Vy z wx(V) = z z 1/ |Fdl

X eFy X e Fy X eFy UGNx(V)
The sum of the weights is at most — Z z 1/|Fd = Z IFv n Ful / |Ful
the number of uncolored neighbors u<N(V)N"Vu X< Fyn Fy

* * U e N(V)ﬂVU
Uncolored neighbors Common colors = Z 1
Ue N(V)ﬂVU 10



Extending an Existing Coloring

» Nx(v): uncolored neighbors u of v for which x « F, « Neighbors of v that could pick color x

» weight wx(v) of acolorx < Fyforve V. wy(v) = z 1/ [Fdl

UeNy(v) & For each neighbor,
sum the probability that it takes color x

» Intuition: wy(v) is not the probability that some neighbor of v picks color x,
but intuitively it corresponds to that

> Lemma: Z wx(v) = [IN(v) n Vy z wx(V) = z z 1/ |Fdl

X eFy X e Fy X eFy UGNx(V)
The sum of the weights is at most — z z 1/|Fd = Z IFv n Ful / |Ful
the number of uncolored neighbors ueNV)"Vu X< Fyn Fu

u < N(v)nVu
t t <> 1 =|N(v) n Vyl

Uncolored neighbors Common colors
Ue N(V)ﬂVU 10



Extending an Existing Coloring



Extending an Existing Coloring

> Lemma: > wx(v) = [N(V) n Vyl

XGFV

11



Extending an Existing Coloring

> Lemma: > wx(v) = [N(V) n Vyl
X eFy
> Corollary: ) wy(v) = IN(V)nVul = |Fy-1

XGFV

11



Extending an Existing Coloring

> Lemma: > wx(v) = [N(V) n Vyl
X eFy
> Corollary: ) wy(v) = IN(V)nVul = |Fy-1

XGFV

11



Extending an Existing Coloring



Extending an Existing Coloring

» Lemma: If node v « Vy picks the random color x < F,, the probability that v can keep its colors
is at least 4-w«(v)

12



Extending an Existing Coloring

» Lemma: If node v « Vy picks the random color x < F,, the probability that v can keep its colors
is at least 4-w«(v)

» P(vcankeep its color x)

12



Extending an Existing Coloring

» Lemma: If node v « Vy picks the random color x < F,, the probability that v can keep its colors
is at least 4-w«(v)

» P(vcankeep its color x)

=n (1-1/|Fudl)

U « Nx(v)

12



Extending an Existing Coloring

» Lemma: If node v « Vy picks the random color x < F,, the probability that v can keep its colors
is at least 4-w«(v)

» P(vcankeep its color x)

=n (1-1/|Fudl)

U « Nx(v)

/

Neighbors that could also pick x

12



Extending an Existing Coloring

» Lemma: If node v « Vy picks the random color x < F,, the probability that v can keep its colors
is at least 4-w«(v)

» P(vcankeep its color x)

Ml @-1/F)

u < Nx(v) *

f Probability that u does not pick x
Neighbors that could also pick x

12



Extending an Existing Coloring

» Lemma: If node v « Vy picks the random color x < F,, the probability that v can keep its colors
is at least 4-w«(v)

» P(vcankeep its color x)

=n (1-1/|Fudl)

u e Nx(v) *

f Probability that u does not pick x

Neighbors that could also pick x

(1-x)=z4~forallx < |0, 1/2]

12



Extending an Existing Coloring

» Lemma: If node v « Vy picks the random color x < F,, the probability that v can keep its colors
is at least 4-w«(v)

» P(vcankeep its color x)

Ml @-1/F)

u < Nx(v) *

f Probability that u does not pick x
Neighbors that could also pick x

(1-x)=z4~forallx < |0, 1/2]

[Ful = 2, otherwise u has no uncolored neighbors

12



Extending an Existing Coloring

» Lemma: If node v « Vy picks the random color x < F,, the probability that v can keep its colors
is at least 4-w«(v)

» P(vcankeep its color x)
-1/ |Fu
N a-1/kp =[147" "
U e Nx(V) * Ue Nx(V)

f Probability that u does not pick x
Neighbors that could also pick x

(1-x)=z4~forallx < |0, 1/2]

[Ful = 2, otherwise u has no uncolored neighbors

12



Extending an Existing Coloring

» Lemma: If node v « Vy picks the random color x < F,, the probability that v can keep its colors
is at least 4-w«(v)

» P(vcankeep its color x)
-2 1/ |Fdl

'1 Fu UeNx(v
N a-1/kp =147V 240
U e Nx(V) * Ue Nx(V)

f Probability that u does not pick x
Neighbors that could also pick x

(1-x)=z4~forallx < |0, 1/2]

[Ful = 2, otherwise u has no uncolored neighbors

12



Extending an Existing Coloring

» Lemma: If node v « Vy picks the random color x < F,, the probability that v can keep its colors
is at least 4-w«(v)

» P(vcankeep its color x)
B z 1 / |Fu| B Wx(V)

-1 Fu ueNx(v
M a-17|) 2147 o4 =4
u < Ny(V) * u e Nx(V)

f Probability that u does not pick x

Neighbors that could also pick x

(1-x)=z4~forallx < |0, 1/2]

[Ful = 2, otherwise u has no uncolored neighbors

12



Extending an Existing Coloring



Extending an Existing Coloring

» Theorem: The probability that a node v « Vi can keep its random color is at least 1/4

13



Extending an Existing Coloring

» Theorem: The probability that a node v « Vi can keep its random color is at least 1/4

» P(vcankeepits color Xy)

13



Extending an Existing Coloring

» Theorem: The probability that a node v « Vi can keep its random color is at least 1/4

» P(vcankeepits color Xy)

=Z1/|Fv|-P(vcan keep color x | Xy =x)

XGFV

13



Extending an Existing Coloring

» Theorem: The probability that a node v « Vi can keep its random color is at least 1/4

» P(vcankeepits color Xy)

=Z1/|Fv|-P(vcan keep color x | Xy =x)

XGFV

'va

XEFV

13



Extending an Existing Coloring

» Theorem: The probability that a node v « Vi can keep its random color is at least 1/4

» P(vcankeepits color Xy)

=Z1/|Fv|-P(vcan keep color x | Xy =x)

XGFV

'va
> 1/|F|- 4 V)
X e Fy

-1/1F - 2 Wx(V)
XeFy

>4

13



Extending an Existing Coloring

» Theorem: The probability that a node v « Vi can keep its random color is at least 1/4

» P(vcankeepits color Xy)

=Z1/|Fv|-P(vcan keep color x | Xy =x)

XGFV

>> 1/|Fy- g WV
x < Fy W et f(wx) = 4O, This is average(f(wx))

-1/1F - 2 Wx(V)
XeFy

>4

13



Extending an Existing Coloring

» Theorem: The probability that a node v « Vi can keep its random color is at least 1/4

» P(vcankeepits color Xy)

=Z1/|FV|-P(vcan keep color x | Xy =x)

XGFV

>> 1/|Fy- g WV
x < Fy W et f(wx) = 4O, This is average(f(wx))

-1/1F - 2 WX(V)
XEFV
> 4 A o This is f(average(wx))

13



Extending an Existing Coloring

» Theorem: The probability that a node v « Vi can keep its random color is at least 1/4

» P(vcankeep its color Xy )

=Z1/|FV|-P(vcan keep color x | Xy =x)

X ¢ Fy
>> 1/|F - g
x < Fy & | et f(wx) = 4%, This is average(f(wx))

-1/1F - 2 WX(V)
XEFV
> 4 A o This is f(average(wx))

average(f(x)) = f(average(x)) if f is convex

13



Extending an Existing Coloring

» Theorem: The probability that a node v « Vi can keep its random color is at least 1/4

» P(vcankeepits color Xy)

=Z1/|Fv|-P(vcan keep color x | Xy =x)

XGFV

>> 1/|Fy- g WV
x < Fy W et f(wx) = 4O, This is average(f(wx))

-1/1F - 2 Wx(V)

XeFy
> 4 D o This is f(average(wx))

average(f(x)) = f(average(x)) if f is convex

13




Extending an Existing Coloring

» Theorem: The probability that a node v « Vi can keep its random color is at least 1/4

» P(vcankeepits color Xy)

=Z1/|Fv|-P(vcan keep color x | Xy =x)

XGFV

>> 1/|Fy- g WV
x < Fy W et f(wx) = 4O, This is average(f(wx))

-1/1F - 2 Wx(V)

XeFy
> 4 D o This is f(average(wx))

average(f(x)) = f(average(x)) if f is convex

13



Extending an Existing Coloring

» Theorem: The probability that a node v « Vi can keep its random color is at least 1/4

» P(vcankeepits color Xy)

=Z1/|Fv|-P(vcan keep color x | Xy =x)

XGFV

>> 1/|Fy- g WV
x < Fy W et f(wx) = 4O, This is average(f(wx))

f(x1)
-1/1F - 2 Wx(V)

XeFy
> 4 D o This is f(average(wx))

average(f(x)) = f(average(x)) if f is convex f(x2)




Extending an Existing Coloring

» Theorem: The probability that a node v « Vi can keep its random color is at least 1/4

» P(vcankeepits color Xy)

=Z1/|Fv|-P(vcan keep color x | Xy =x)

XGFV

>> 1/|Fy- g WV
x < Fy W et f(wx) = 4O, This is average(f(wx))

f(x1)
-1/1F - 2 Wx(V)

XeFy
> 4 D o This is f(average(wx))

average(f(x)) = f(average(x)) if f is convex f(x2) T~

X1 avg(x) X2
13



Extending an Existing Coloring

» Theorem: The probability that a node v « Vi can keep its random color is at least 1/4

» P(vcankeepits color Xy)

=Z1/|Fv|-P(vcan keep color x | Xy =x)

X € Fy
- Wx \'/
>) 1/|F- 4 )
x < Fy & | et f(wx) = 4%, This is average(f(wx))
-1/1F - 2 Wx(V)
XeFy
= 4 * This is f(average(wx))

average(f(x)) = f(average(x)) if f is convex

f(x1)

f(avg(x))
f(x2)

X1

avg(x)

13

X2



Extending an Existing Coloring

» Theorem: The probability that a node v « Vi can keep its random color is at least 1/4

» P(vcankeepits color Xy)

=Z1/|Fv|-P(vcan keep color x | Xy =x)

X € Fy
- Wx \'/
>) 1/|F- 4 )
x < Fy & | et f(wx) = 4%, This is average(f(wx))
-1/1F - 2 Wx(V)
XeFy
= 4 * This is f(average(wx))

average(f(x)) = f(average(x)) if f is convex

f(x1)

avg(f(x))
f(avg(x))
f(x2)

X1

avg(x)

13

X2



Extending an Existing Coloring

» Theorem: The probability that a node v « Vi can keep its random color is at least 1/4

» P(vcankeepits color Xy)

=Z1/|Fv|-P(vcan keep color x | Xy =x)

XGFV

'va
> 1/|F|- 4 V)
X e Fy

-1/1F - 2 Wx(V)
XeFy

>4

13



Extending an Existing Coloring

» Theorem: The probability that a node v « Vi can keep its random color is at least 1/4

» P(vcankeepits color Xy)

=Z1/|Fv|-P(vcan keep color x | Xy =x)

XGFV

'va
> 1/|F|- 4 V)
X e Fy

-1/1F - 2 Wx(V)
XeFy

>

- (1/1F) - (IFvl -1)

13



Extending an Existing Coloring

» Theorem: The probability that a node v « Vi can keep its random color is at least 1/4

» P(vcankeepits color Xy)

=Z1/|Fv|-P(vcan keep color x | Xy =x)

XGFV

'va
> 1/|F|- 4 V)
X e Fy

-1/1F - 2 Wx(V)
XeFy

- (1/1F) - (IFvl -1)

- 1

13



Randomized Coloring



Randomized Coloring

» Theorem: the discussed randomized coloring algorithm computes a valid coloring of G=(V, E)
in O(log n) rounds in expectation and with high probability. Every node v<V gets a color in

{1, ..., deg(v) + 1}

14



Randomized Coloring

» Theorem: the discussed randomized coloring algorithm computes a valid coloring of G=(V, E)

in O(log n) rounds in expectation and with high probability. Every node v<V gets a color in
{1, ..., deg(v) + 1}

» P(vuncolored after T phases ) = (3/4)T

14



Randomized Coloring

» Theorem: the discussed randomized coloring algorithm computes a valid coloring of G=(V, E)
in O(log n) rounds in expectation and with high probability. Every node v<V gets a color in
{1, ..., deg(v) + 1}

» P(vuncolored after T phases ) = (3/4)T

» Choose T = (c+1) logs/z n = O(log n)

14



Randomized Coloring

» Theorem: the discussed randomized coloring algorithm computes a valid coloring of G=(V, E)

in O(log n) rounds in expectation and with high probability. Every node v<V gets a color in
{1, ..., deg(v) + 1}

» P(vuncolored after T phases ) = (3/4)T
» Choose T = (c+1) logs;s n = O(log n)

» P(vuncolored after T phases) s 1/ nct

14



Randomized Coloring

» Theorem: the discussed randomized coloring algorithm computes a valid coloring of G=(V, E)
in O(log n) rounds in expectation and with high probability. Every node v<V gets a color in
{1, ..., deg(v) + 1}

» P(vuncolored after T phases ) = (3/4)T
» Choose T = (c+1) logs;s n = O(log n)
» P(vuncolored after T phases ) s 1/ nc*t

» P(some node uncolored after T phases)sn-1/n¢"=1/ne¢

14



Randomized Coloring

» Theorem: the discussed randomized coloring algorithm computes a valid coloring of G=(V, E)
in O(log n) rounds in expectation and with high probability. Every node v<V gets a color in
{1, ..., deg(v) + 1}

» P(vuncolored after T phases ) = (3/4)T
» Choose T = (c+1) logs;s n = O(log n)
» P(vuncolored after T phases ) s 1/ nc*t

» P(some node uncolored after T phases)sn-1/n¢"=1/ne¢

)

Union Bound: P(A U B ) = P(A) + P(B) - P(A n B) < P(A) + P(B)

14



Randomized MIS: Ideas



Randomized MIS: Ideas

» Compute a (A+1)-coloring, then convert it into an MIS as seen in the last lecture:

15



Randomized MIS: Ideas

» Compute a (A+1)-coloring, then convert it into an MIS as seen in the last lecture:

* requires O(A + log n)

15



Randomized MIS: Ideas

» Compute a (A+1)-coloring, then convert it into an MIS as seen in the last lecture:
* requires O(A + log n)

» Compute arandom ID assignment, then run the greedy algorithm seen in the last lecture:

15



Randomized MIS: Ideas

» Compute a (A+1)-coloring, then convert it into an MIS as seen in the last lecture:
* requires O(A + log n)
» Compute arandom ID assignment, then run the greedy algorithm seen in the last lecture:

* requires O(log n), but its analysis is highly non-trivial

15



Randomized MIS: Ideas

» Compute a (A+1)-coloring, then convert it into an MIS as seen in the last lecture:
* requires O(A + log n)

» Compute arandom ID assignment, then run the greedy algorithm seen in the last lecture:
« requires O(log n), but its analysis is highly non-trivial

» We are going to follow a similar approach. At each round:

15



Randomized MIS: Ideas

» Compute a (A+1)-coloring, then convert it into an MIS as seen in the last lecture:
* requires O(A + log n)

» Compute arandom ID assignment, then run the greedy algorithm seen in the last lecture:
* requires O(log n), but its analysis is highly non-trivial

» We are going to follow a similar approach. At each round:

» Each node v picks a random number R, < [0,1]

15



Randomized MIS: Ideas

» Compute a (A+1)-coloring, then convert it into an MIS as seen in the last lecture:
* requires O(A + log n)

» Compute arandom ID assignment, then run the greedy algorithm seen in the last lecture:
* requires O(log n), but its analysis is highly non-trivial

» We are going to follow a similar approach. At each round:

» Each node v picks a random number R, < [0,1]

* Node v joins the MIS if Ry < R, for all u « N(v)

15



Randomized MIS: Ideas

» Compute a (A+1)-coloring, then convert it into an MIS as seen in the last lecture:
* requires O(A + log n)

» Compute arandom ID assignment, then run the greedy algorithm seen in the last lecture:
« requires O(log n), but its analysis is highly non-trivial

» We are going to follow a similar approach. At each round: Q

» Each node v picks a random number R, < [0,1]

* Node v joins the MIS if Ry < R, for all u « N(v)

15



Randomized MIS: Ideas

» Compute a (A+1)-coloring, then convert it into an MIS as seen in the last lecture:
* requires O(A + log n)

» Compute arandom ID assignment, then run the greedy algorithm seen in the last lecture:
* requires O(log n), but its analysis is highly non-trivial

» We are going to follow a similar approach. At each round: @

» Each node v picks a random number R, < [0,1]

* Node v joins the MIS if Ry < R, for all u « N(v)

15



Randomized MIS: Luby's Algorithm



Randomized MIS: Luby's Algorithm

» At each round:



Randomized MIS: Luby's Algorithm

» At each round:

« Each node v picks a random number R, « [0,1]

16



Randomized MIS: Luby's Algorithm

» At each round:

« Each node v picks a random number R, « [0,1]

* Node vjoins the MIS if R, < R, for all u « N(v)

16



Randomized MIS: Luby's Algorithm

» At each round:

» Each node v picks a random number R, « [0,1]
* Node vjoins the MISif R, < R, for all u « N(v)

 Remove MIS nodes and its neighbors

16



Randomized MIS: Luby's Algorithm

» At each round:

» Each node v picks a random number R, < [0,1]

* Nodev joins the MIS if R, < R, for all u « N(v)

 Remove MIS nodes and its neighbors ““‘
@

.
(O

O

O

16



Randomized MIS: Luby's Algorithm

» At each round:

Each node v picks a random number R, < [0,1]

Node v joins the MIS if R, < R, for all u « N(v)

)

Remove MIS nodes and its neighbors @‘@‘e
13 /.3
4 J
(15

16



Randomized MIS: Luby's Algorithm

» At each round:

Each node v picks a random number R, < [0,1]

Node v joins the MIS if R, < R, for all u « N(v)

)

Remove MIS nodes and its neighbors @‘@‘e
13 /.3
4
(15

16



Randomized MIS: Luby's Algorithm

» At each round:

Each node v picks a random number R, < [0,1]

Node v joins the MIS if R, < R, for all u « N(v)

)

Remove MIS nodes and its neighbors @‘@‘e
13 /.3
4
(15

16



Randomized MIS: Luby's Algorithm

» At each round:

» Each node v picks a random number R, < [0,1]

* Nodev joins the MIS if R, < R, for all u « N(v)

D

p

 Remove MIS nodes and its neighbors “e‘e
O

16



Randomized MIS: Luby's Algorithm

» At each round:

» Each node v picks a random number R, < [0,1]

* Nodev joins the MIS if R, < R, for all u « N(v)

—QO

 Remove MIS nodes and its neighbors ““e
p
S (O
O

16



Randomized MIS: Luby's Algorithm

» At each round:

» Each node v picks a random number R, < [0,1]

* Nodev joins the MIS if R, < R, for all u « N(v)

 Remove MIS nodes and its neighbors ““.
O

p
(

@

@

16



Randomized MIS: Luby's Algorithm

» At each round:

» Each node v picks a random number R, « [0,1]
* Node vjoins the MIS if R, < R, for all u « N(v)

 Remove MIS nodes and its neighbors

» P( vjoins MIS) =1/ (deg(v) +1)

17



Randomized MIS: Luby's Algorithm

» At each round:

» Each node v picks a random number R, < [0,1]
* Node vjoins the MISif R, < R, for all u « N(v) @

 Remove MIS nodes and its neighbors

» P( vjoins MIS) =1/ (deg(v)+1)

17



Randomized MIS: Luby's Algorithm

» At each round:

» Each node v picks a random number R, < [0,1]
* Node vjoins the MISif R, < R, for all u « N(v)

 Remove MIS nodes and its neighbors

» P( vjoins MIS) =1/ (deg(v)+1)

» Can we prove that a constant fraction of nodes gets removed?

17



Randomized MIS: Luby's Algorithm

» At each round:

» Each node v picks a random number R, < [0,1]
* Node vjoins the MISif R, < R, for all u « N(v)

 Remove MIS nodes and its neighbors

» P( vjoins MIS) =1/ (deg(v)+1)

» Can we prove that a constant fraction of nodes gets removed?
* No!

17



Randomized MIS: Luby's Algorithm



Randomized MIS: Luby's Algorithm

» Can we prove that a constant fraction of nodes gets removed?

18



Randomized MIS: Luby's Algorithm

» Can we prove that a constant fraction of nodes gets removed?
* No!

18



Randomized MIS: Luby's Algorithm

» Can we prove that a constant fraction of nodes gets removed?
* No!

;/'//

)
h
\l

‘4‘

{
U




Randomized MIS: Luby's Algorithm

» Can we prove that a constant fraction of nodes gets removed?
* No!

;/'//

;/
h

o%// vn

18



Randomized MIS: Luby's Algorithm

» Can we prove that a constant fraction of nodes gets removed?
* No!

;/'//

;/
h

o%// vn

18



Randomized MIS: Luby's Algorithm

» Can we prove that a constant fraction of nodes gets removed?
* No!

;/'//

c

;/
h

o%// vn

18



Randomized MIS: Luby's Algorithm

» Can we prove that a constant fraction of nodes gets removed?
* No!

* .

P(ujoinsMIS)=1/n

c

18



Randomized MIS: Luby's Algorithm

» Can we prove that a constant fraction of nodes gets removed?
* No!

;/'//

c

P(ujoinsMIS)=1/n

P( some node of the right side joins MIS) =1/ +vn

W
g
i
\

18



Randomized MIS: Luby's Algorithm

» Can we prove that a constant fraction of nodes gets removed?
* No!

;/'//

c

P(ujoinsMIS)=1/n
P( some node of the right side joins MIS) =1/ +vn
with high probability, no node of the right side joins the MIS

y
Al

(
4
,/0

Q
de
\

)
W
///w

=
<
=

18



Randomized MIS: Luby's Algorithm

» Can we prove that a constant fraction of nodes gets removed?
* No!

P(ujoinsMIS)=1/n

P( some node of the right side joins MIS) =1/ +vn

a

c

with high probability, no node of the right side joins the MIS

i
o
i

nodes of the left side only get removed if they join MIS

W
A

=
<
=

18



Randomized MIS: Luby's Algorithm

» Can we prove that a constant fraction of nodes gets removed?
* No!

P(ujoinsMIS)=1/n

P( some node of the right side joins MIS) =1/ +vn

a

c

with high probability, no node of the right side joins the MIS

i
o
i

nodes of the left side only get removed if they join MIS

W
A

=
<
=

18



Randomized MIS: Luby's Algorithm

» Can we prove that a constant fraction of nodes gets removed?
* No!

P(ujoinsMIS)=1/n

P( some node of the right side joins MIS) =1/ +vn

a

c

with high probability, no node of the right side joins the MIS

i
o
i

nodes of the left side only get removed if they join MIS

W
A

P(vjoins MIS)=1/+/n

=
<
=

18



Randomized MIS: Luby's Algorithm

» Can we prove that a constant fraction of nodes gets removed?
* No!

P(ujoinsMIS)=1/n

P( some node of the right side joins MIS) =1/ +vn

a

c

with high probability, no node of the right side joins the MIS

i
o
i

nodes of the left side only get removed if they join MIS

W
A

P(vjoins MIS)=1/+/n

\\'§

only a 1/+n fraction of nodes join the MIS

=
<
=

18



Randomized MIS: Luby's Algorithm



Randomized MIS: Luby's Algorithm

» Lemma: in expectation, at least half of the remaining edges are removed.

19



Randomized MIS: Luby's Algorithm

» Lemma: in expectation, at least half of the remaining edges are removed.

» An edge {u, v} gets removed if either u or v gets removed

19



Randomized MIS: Luby's Algorithm

» Lemma: in expectation, at least half of the remaining edges are removed.

» An edge {u, v} gets removed if either u or v gets removed

19



Randomized MIS: Luby's Algorithm

» Lemma: in expectation, at least half of the remaining edges are removed.

» An edge {u, v} gets removed if either u or v gets removed

19



Randomized MIS: Luby's Algorithm

» Lemma: in expectation, at least half of the remaining edges are removed.

» An edge {u, v} gets removed if either u or v gets removed

-

19



Randomized MIS: Luby's Algorithm

» Lemma: in expectation, at least half of the remaining edges are removed.

» An edge {u, v} gets removed if either u or v gets removed

» For each edge {u, v}, we define events &,, and &,

19



Randomized MIS: Luby's Algorithm

» Lemma: in expectation, at least half of the remaining edges are removed.

» An edge {u, v} gets removed if either u or v gets removed
» For each edge {u, v}, we define events &,, and &,

e &uv © Vw e N(u) u N(v) \ {u} : Xu < Xw

19



Randomized MIS: Luby's Algorithm

» Lemma: in expectation, at least half of the remaining edges are removed.

» An edge {u, v} gets removed if either u or v gets removed
» For each edge {u, v}, we define events &,, and &,

e &uv © Vw e N(u) u N(v) \ {u} : Xu < Xw

van

O

19



Randomized MIS: Luby's Algorithm

» Lemma: in expectation, at least half of the remaining edges are removed.

» An edge {u, v} gets removed if either u or v gets removed
» For each edge {u, v}, we define events &,, and &,

e &uv © Vw e N(u) u N(v) \ {u} : Xu < Xw

O

Smallest
O Cuyv is true

\Y

19



Randomized MIS: Luby's Algorithm

» Lemma: in expectation, at least half of the remaining edges are removed.

» An edge {u, v} gets removed if either u or v gets removed
» For each edge {u, v}, we define events &,, and &,

e &uv © Vw e N(u) u N(v) \ {u} : Xu < Xw

O

Smallest
O Cuyv is true

VvV
cwy is false

19



Randomized MIS: Luby's Algorithm

» Lemma: in expectation, at least half of the remaining edges are removed.

» An edge {u, v} gets removed if either u or v gets removed
» For each edge {u, v}, we define events &,, and &,

e &uv © Vw e N(u) u N(v) \ {u} : Xu < Xw

€uvis true = all edges of v get removed "because of u”

cwy is false

19



Randomized MIS: Luby's Algorithm



Randomized MIS: Luby's Algorithm

» &uv © Vw e N(u) u N(v) \ {u} : Xu < Xw

20



Randomized MIS: Luby's Algorithm

» &uv © Vw e N(u) u N(v) \ {u} : Xu < Xw

»  Xuy:=deg(v)if €,y holds, 0 otherwise

20



Randomized MIS: Luby's Algorithm

» &uv © Vw e N(u) u N(v) \ {u} : Xu < Xw

»  Xuy:=deg(v)if €,y holds, 0 otherwise

) X:= z (Xu,v -+ Xv,u)
{u v}cE

20



Randomized MIS: Luby's Algorithm

» &uv © Vw e N(u) u N(v) \ {u} : Xu < Xw

»  Xuy:=deg(v)if €,y holds, 0 otherwise

) X:= z (Xu,v -+ Xv,u)
{u v}cE

» Claim: X < 2 - # deleted edges

20



Randomized MIS: Luby's Algorithm

) Eu,v = VW € N(U) U N(V) \ {U} . Xu < Xw

»  Xuy:=deg(v)if €,y holds, 0 otherwise

P X = z (Xu,v + Xv,u)
{u v}cE

» Claim: X < 2 - # deleted edges

* Foreach node v, at most one incident edges satisfies €,y

20



Randomized MIS: Luby's Algorithm

) Eu,v = VW € N(U) U N(V) \ {U} . Xu < Xw
Eu,v IS true

»  Xuy:=deg(v)if €,y holds, 0 otherwise

P X = z (Xu,v + Xv,u)
{u v}cE

» Claim: X < 2 - # deleted edges

* Foreach node v, at most one incident edges satisfies €,y

20



Randomized MIS: Luby's Algorithm

) Eu,v = VW € N(U) U N(V) \ {U} . Xu < Xw
Eu,v IS true

» Xuv:=deg(v)if €,y holds, 0 otherwise Xu,v is deg(v)

P X = z (Xu,v + Xv,u)
{u v}cE

» Claim: X < 2 - # deleted edges

* Foreach node v, at most one incident edges satisfies €,y

20



Randomized MIS: Luby's Algorithm

) Eu,v = VW € N(U) U N(V) \ {U} . Xu < Xw
Eu,v IS true

» Xuv:=deg(v)if €,y holds, 0 otherwise Xu,v is deg(v)

P X = z (Xu,v + Xv,u)

{u,v}<E Ewy is false

» Claim: X < 2 - # deleted edges

* Foreach node v, at most one incident edges satisfies €,y

20



Randomized MIS: Luby's Algorithm

) Eu,v = VW € N(U) U N(V) \ {U} . Xu < Xw
Eu,v IS true

» Xuv:=deg(v)if €,y holds, 0 otherwise Xu,v is deg(v)

P X = z (Xu,v + Xv,u)
{u v}cE

» Claim: X < 2 - # deleted edges Xwyvis O

Ewy is false

* Foreach node v, at most one incident edges satisfies €,y

20



Randomized MIS: Luby's Algorithm

) £u,v = VW € N(U) U N(V) \ {U} . Xu < Xw
Eu,v IS true

» Xuv:=deg(v)if €,y holds, 0 otherwise Xu,v is deg(v)

) X:= z (Xu,v -+ Xv,u)
{u v}cE

» Claim: X < 2 - # deleted edges Xwyis O

Ewy is false

* For each node v, at most one incident edges satisfies €.,y

* SO0 every edge incident to v is counted once, for v

20



Randomized MIS: Luby's Algorithm

) Eu,v = VW € N(U) U N(V) \ {U} . Xu < Xw
. , O
» Xuyv:=deg(v)if &, holds, 0 otherwise Sma"est (W)

9
P X = z (Xu,v + Xv,u) " '
o 'v
» Claim: X < 2 - # deleted edges Q' (O \
* For each node v, at most one incident edges satisfies €,y ()

(2,
* SO0 every edge incident to v is counted once, for v K J

20




Randomized MIS: Luby's Algorithm

) Eu,v = VW € N(U) U N(V) \ {U} . Xu < Xw

. , O
» Xuyv:=deg(v)if &, holds, 0 otherwise Smallest (W)
O

4 X:= z (Xu,v + Xv,u) 6‘ ‘

u
{U, V} e E "
» Claim: X < 2 - # deleted edges (O ® () (O \
(2,

o
* For each node v, at most one incident edges satisfies €,y ()

* so every edge incident to v is counted once, for v K smﬁest

20




Randomized MIS: Luby's Algorithm

) Eu,v = VW € N(U) U N(V) \ {U} . Xu < Xw

» Xuv:=deg(v)if €, holds, 0 otherwise

P X

.= z (Xu,v + Xv,u)

{u v}cE

» Claim: X < 2 - # deleted edges

For each node v, at most one incident edges satisfies €,

so every edge incident to v is counted once, for v

every edge can be counted once, for each endpoint

/
i,
NN

O

/

Smallest @

(B

o

\_ C

f

Smallest

5

20



Randomized MIS: Luby's Algorithm

» &uv © Vw e N(u) u N(v) \ {u} : Xu < Xw

»  Xuy:=deg(v)if €,y holds, 0 otherwise

) X:= z (Xu,v -+ Xv,u)
{u,v}<E

» X<2-#deleted edges

21



Randomized MIS: Luby's Algorithm

» &uv © Vw e N(u) u N(v) \ {u} : Xu < Xw

»  Xuy:=deg(v)if €,y holds, 0 otherwise

) X:= z (Xu,v -+ Xv,u)
{u v}cE

» X<2-#deleted edges

» Claim: E[X]| = |E|

21



Randomized MIS: Luby's Algorithm

» &uv © Vw e N(u) u N(v) \ {u} : Xu < Xw

»  Xuy:=deg(v)if €,y holds, 0 otherwise

) X:= z (Xu,v -+ Xv,u)
{u v}cE

» X<2-#deleted edges

» Claim: E[X]| = |E|

C [Xu,VI =

21



Randomized MIS: Luby's Algorithm

» &uv © Vw e N(u) u N(v) \ {u} : Xu < Xw

»  Xuy:=deg(v)if €,y holds, 0 otherwise

) X:= z (Xu,v -+ Xv,u)
{u v}cE

» X<2-#deleted edges

» Claim: E[X]| = |E|

'[Xu,v] = deg(V) ’ P(Eu,v)

21



Randomized MIS: Luby's Algorithm

» &uv © Vw e N(u) u N(v) \ {u} : Xu < Xw

»  Xuy:=deg(v)if €,y holds, 0 otherwise

P X = z (Xu,v + Xv,u)
{u v}cE

» X<2-#deleted edges

7

At most deg(u) + deg(v) nodes

» Claim: E[X]| = |E|

E[Xuy] = deg(v) - P(Euy)

21



Randomized MIS: Luby's Algorithm

» &uv © Vw e N(u) u N(v) \ {u} : Xu < Xw

»  Xuy:=deg(v)if €,y holds, 0 otherwise

) X:= z (Xu,v -+ Xv,u)
{u v}cE

» X<2-#deleted edges

7

At most deg(u) + deg(v) nodes

» Claim: E[X]| = |E|

E[Xun] = deg(v) - P(Euy) 2 deg(v) - 1/ (deg(u) + deg(v))

21



Randomized MIS: Luby's Algorithm

» &uv © Vw e N(u) u N(v) \ {u} : Xu < Xw

»  Xuy:=deg(v)if €,y holds, 0 otherwise

P X = z (Xu,v + Xv,u)
{u,v}<E

» X<2-#deleted edges

7

At most deg(u) + deg(v) nodes

» Claim: E[X]| = |E|

E[Xuyv]l = deg(v) - P(Euy) 2deg(v) - 1/ (deg(u) +deg(v)) =deg(v)/ (deg(u) + deg(v))

21



Randomized MIS: Luby's Algorithm

» &uv © Vw e N(u) u N(v) \ {u} : Xu < Xw

»  Xuy:=deg(v)if €,y holds, 0 otherwise

P X = z (Xu,v + Xv,u)
{u,v}<E

» X<2-#deleted edges

7

At most deg(u) + deg(v) nodes

» Claim: E[X]| = |E|

E[Xuyv]l = deg(v) - P(Euy) 2deg(v) - 1/ (deg(u) +deg(v)) =deg(v)/ (deg(u) + deg(v))

=[x] =

21



Randomized MIS: Luby's Algorithm

» &uv © Vw e N(u) u N(v) \ {u} : Xu < Xw

»  Xuy:=deg(v)if €,y holds, 0 otherwise

P X = z (Xu,v + Xv,u)
{u v}cE

» X<2-#deleted edges

7

At most deg(u) + deg(v) nodes

» Claim: E[X]| = |E|

E[Xuy] = deg(v) - P(Euy) 2deg(v) - 1/ (deg(u) +deg(v)) =deg(v)/ (deg(u) +deg(v))
10 = EL D (00 %00 ]

{u,v}<E

21



Randomized MIS: Luby's Algorithm

» &uv © Vw e N(u) u N(v) \ {u} : Xu < Xw

»  Xuy:=deg(v)if €,y holds, 0 otherwise

P X

.= z (Xu,v + Xv,u)

{U, V} e E

» X<2-#deleted edges

» Claim: E[X]| = |E|

7

At most deg(u) + deg(v) nodes

E[Xuy] = deg(v) - P(Euy) 2deg(v) - 1/ (deg(u) +deg(v)) =deg(v)/ (deg(u) +deg(v))
10 = EL D (00 %00 ]

{u,v}<E

Linearity of expectation: E[X + Y] = E[X] + E[Y]

21



Randomized MIS: Luby's Algorithm

» &uv © Vw e N(u) u N(v) \ {u} : Xu < Xw

»  Xuy:=deg(v)if €,y holds, 0 otherwise

) X:= z (Xu,v -+ Xv,u)
{u v}cE

» X<2-#deleted edges

7

At most deg(u) + deg(v) nodes

» Claim: E[X]| = |E|

o [E[Xuy]l = deg(v) - P(Euy) 2deg(v) - 1/ (deg(u)+deg(v)) =deg(v)/ (deg(u) + deg(v))
¢ ‘[X] - '[ Z(Xu,v+Xv,u) ] - Z( '[Xu,v] = '[Xv,u] )

{u,v}<E {u,v}<E

Linearity of expectation: E[X + Y] = E[X] + E[Y]

21



Randomized MIS: Luby's Algorithm

» &uv © Vw e N(u) u N(v) \ {u} : Xu < Xw

»  Xuy:=deg(v)if €,y holds, 0 otherwise

) X:= z (Xu,v -+ Xv,u)
{u v}cE

» X<2-#deleted edges

7

At most deg(u) + deg(v) nodes

» Claim: E[X]| = |E|

o [E[Xuy]l = deg(v) - P(Euy) 2deg(v) - 1/ (deg(u)+deg(v)) =deg(v)/ (deg(u) + deg(v))
° '[X] = '[ Z(Xu,v+xv,u) ] = Z( '[XU,V] + '[XV,U] ) 2 z 1

{u,v}<E {u,v}<E {u,v}<E

Linearity of expectation: E[X + Y] = E[X] + E[Y]

21



Randomized MIS: Luby's Algorithm

» &uv © Vw e N(u) u N(v) \ {u} : Xu < Xw

»  Xuy:=deg(v)if €,y holds, 0 otherwise

) X:= z (Xu,v -+ Xv,u)
{u v}cE

» X<2-#deleted edges

7

At most deg(u) + deg(v) nodes

» Claim: E[X]| = |E|

o [E[Xuy]l = deg(v) - P(Euy) 2deg(v) - 1/ (deg(u)+deg(v)) =deg(v)/ (deg(u) + deg(v))
¢ '[X] = '[ Z(Xu,v+xv,u)] = Z( '[Xu,v]+ '[Xv,u] ) 2 z 1 = |E]

{u,v}<E {u,v}<E {u,v}<E

Linearity of expectation: E[X + Y] = E[X] + E[Y]

21



Randomized MIS: Luby's Algorithm

» Lemma: in expectation, at least half of the remaining edges are removed.

22



Randomized MIS: Luby's Algorithm

» Lemma: in expectation, at least half of the remaining edges are removed.

» X <2 #deleted edges

22



Randomized MIS: Luby's Algorithm

» Lemma: in expectation, at least half of the remaining edges are removed.

» X <2 #deleted edges

» E[X] = |E|

22



Randomized MIS: Luby's Algorithm

» Lemma: in expectation, at least half of the remaining edges are removed.

» X <2 #deleted edges

» E[X] = |E|

» #deletededges = X /2



Randomized MIS: Luby's Algorithm

» Lemma: in expectation, at least half of the remaining edges are removed.

» X <2 #deleted edges

» E[X] = |E|

» #deletededges = X /2

» [E[#deletededges] =z E[X/2] = |E|/2




Randomized MIS: Luby's Algorithm

» Lemma: in expectation, at least half of the remaining edges are removed.

23



Randomized MIS: Luby's Algorithm

» Lemma: in expectation, at least half of the remaining edges are removed.

» Theorem: Luby's randomized MIS algorithm computes an MIS in time O(log n) in expectation
and with high probability.

23



Randomized MIS: Luby's Algorithm

» Lemma: in expectation, at least half of the remaining edges are removed.

» Theorem: Luby's randomized MIS algorithm computes an MIS in time O(log n) in expectation
and with high probability.

23



Randomized MIS: Luby's Algorithm

» Lemma: in expectation, at least half of the remaining edges are removed.

» Theorem: Luby's randomized MIS algorithm computes an MIS in time O(log n) in expectation
and with high probability.

» Markov's inequality: P(X za) = E[X]/ a

23



Randomized MIS: Luby's Algorithm

» Lemma: in expectation, at least half of the remaining edges are removed.

» Theorem: Luby's randomized MIS algorithm computes an MIS in time O(log n) in expectation
and with high probability.

» Markov's inequality: P(X za) = E[X]/ a

* What is the probability that the number of remaining edges is at least a fraction 3/4?

23



Randomized MIS: Luby's Algorithm

» Lemma: in expectation, at least half of the remaining edges are removed.

» Theorem: Luby's randomized MIS algorithm computes an MIS in time O(log n) in expectation
and with high probability.

» Markov's inequality: P(X za) = E[X]/ a

* What is the probability that the number of remaining edges is at least a fraction 3/4?

* By Markov: at most 2/3

23



Randomized MIS: Luby's Algorithm

» Lemma: in expectation, at least half of the remaining edges are removed.

» Theorem: Luby's randomized MIS algorithm computes an MIS in time O(log n) in expectation
and with high probability.

» Markov's inequality: P(X za) = E[X]/ a

* What is the probability that the number of remaining edges is at least a fraction 3/4?
* By Markov: at most 2/3

* Hence, with probability at least 1/3 we remove of at least a fraction 1/4 of edges.

23



Randomized MIS: Luby's Algorithm

» Lemma: in expectation, at least half of the remainingare removed.

» Theorem: Luby's randomized MIS algorithm computes an MIS in time O(log n) in expectation
and with high probability.

» Markov's inequality: P(X za) = E[X]/ a

* What is the probability that the number of remaining edges is at least a fraction 3/4?
* By Markov: at most 2/3

* Hence, with probability at least 1/3 we remove of at least a fraction 1/4 of edges.

23



From MIS to (A+1)-coloring



From MIS to (A+1)-coloring

. : G
» Assume we want to compute a coloring on O (d)
graph G

24



From MIS to (A+1)-coloring

» Assume we want to compute a coloring on
graph G

» We transform G into a new virtual graph H

24



From MIS to (A+1)-coloring

» Assume we want to compute a coloring on
graph G

» We transform G into a new virtual graph H

» that can be simulated on G

24



From MIS to (A+1)-coloring

» Assume we want to compute a coloring on
graph G

» We transform G into a new virtual graph H
» that can be simulated on G

1. Create A+1 copies of G

a4

24



From MIS to (A+1)-coloring

» Assume we want to compute a coloring on
graph G

» We transform G into a new virtual graph H
» that can be simulated on G
1. Create A+1 copies of G

2. Connect corresponding nodes in the copies
to a clique

do

ds

24



From MIS to (A+1)-coloring

» Assume we want to compute a coloring on Simulated by a

graph G \

» We transform G into a new virtual graph H
» that can be simulated on G
1. Create A+1 copies of G

2. Connect corresponding nodes in the copies
to a clique

do

ds

24



From MIS to (A+1)-coloring

. : G
» Assume we want to compute a coloring on O (d)
graph G

» We transform G into a new virtual graph H a C1 H

» that can be simulated on G 1

0)

1. Create A+1 copies of G

IQ_\
S,

2. Connect corresponding nodes in the copies
to a clique N \
ds C3 ‘
3. Compute MIS on H J\K% O@
3
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» Claim: the MIS contains exactly one node from each column
* At most 1: each column forms a clique

* Atleast 1: each neighbor in G can cover at most 1 copy.
But there are at most A neighbors in G, and A+1 copies.
So at least one node for each column cannot be a
neighbor of MIS nodes of other columns.
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» Claim: the MIS contains exactly one node from each column
* At most 1: each column forms a clique

* Atleast 1: each neighbor in G can cover at most 1 copy.
But there are at most A neighbors in G, and A+1 copies.
So at least one node for each column cannot be a
neighbor of MIS nodes of other columns.

» Algorithm: if a column node vi is in the MIS, node v picks
color i
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From MIS to (A+1)-coloring

» Theorem: together with the O(log n) randomized MIS algorithm, this reduction gives an
alternative way to compute a A+1 coloring in O(log n) rounds.

» Remark: this construction can be modified to assign colors in {1, ..., deg(v)+1}:

e Putdeg(v)+1 copies of v instead of A+1
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» Best deterministic algorithms:
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