Lower Bounds

Dennis Olivetti

University of Freiburg, Germany



Lower Bounds

"The 2-coloring problem requires €)(n) rounds”

Dennis Olivetti

University of Freiburg, Germany



Lower bounds

» 2 coloring




Lower bounds

» 2 coloring



Lower bounds

» 2 coloring
« can be solved in O(n) rounds




Lower bounds

» 2 coloring
« can be solved in O(n) rounds
* requires ((n) rounds




Lower bounds

» 2 coloring
_+ can be solved in O(n) rounds
.« requires O(n) rounds |




Lower bounds

» 2 coloring
“+ can be solved in O(n) rounds
|« requires Q(n) rounds !

» Coloring trees




Lower bounds

» 2 coloring
_» can be solved in O(n) rounds
|« requires Q(n) rounds !

» Coloring trees
* 3 coloring trees can be done in O(log n) rounds




Lower bounds

» 2 coloring
_+ can be solved in O(n rounds

» Coloring trees
* 3 coloring trees can be done in O(log n) rounds
* 3 coloring rooted trees can be done in O(log* n) rounds

-\\.



Lower bounds

» 2 coloring
* can be solved in O(n) rounds
|« requires Q(n) rounds !

» Coloring trees
« 3 coloring trees can be done in O(log n) rounds
* 3 coloring rooted trees can be done in O(log* n) rounds
» 0(A /log A) coloring trees of maximum degree A requires Q(log, n)
rounds




Lower bounds

» 2 coloring
_+ can be solved in O(n rounds

» Coloring trees
* 3 coloring trees can be done in O(log n) rounds
* 3 colorlng rooted trees can be done in O(Iog* n) rounds
P o(A/ log A) colorlng trees of maximum degree A reqmres Q(IogA n)
f rounds

T D T BT <l WO VT Ao Lo fo< L e s o BT RS A WP 43 s A s Ass Bt La b <2



Lower bounds

» 2 coloring
_+ can be solved in O(n rounds

» Coloring trees
* 3 coloring trees can be done in O(log n) rounds
* 3 colorlng rooted trees can be done in O(Iog* n) rounds

. o(A/ log A) colorlng trees of maximum degree A reqmres Q(IogA n)
f rounds |

s o /amg s Sl e Ao Lo fo<

» 3 coloring paths or cycles




Lower bounds

» 2 coloring
_+ can be solved in O(n rounds

» Coloring trees
* 3 coloring trees can be done in O(log n) rounds
* 3 colorlng rooted trees can be done in O(Iog* n) rounds

. o(A/ log A) colorlng trees of maximum degree A reqmres Q(IogA n)
f rounds _

T Zan_ QaC a4 aaie) Ao 8 Lo <2

» 3 coloring paths or cycles
 can be solved in O(log* n) rounds




Lower bounds

» 2 coloring
_+ can be solved in O(n rounds

» Coloring trees
* 3 coloring trees can be done in O(log n) rounds
* 3 colorlng rooted trees can be done in O(Iog* n) rounds

P o(A/ log A) colorlng trees of maximum degree A reqmres Q(IogA n)
f rounds _

T Zan_ QaC a4 aaie) Ao Lo fo<

» 3 coloring paths or cycles
 can be solved in O(log* n) rounds
* requires Q(log* n) rounds




Lower bounds

» 2 coloring
_+ can be solved in O(n) rounds
| o requwes Q(n) rounds

» Coloring trees
* 3 coloring trees can be done in O(log n) rounds
* 3 colonng rooted trees can be done in O(Iog* n) rounds

. o(A/ log A) colonng trees of maximum degree A reqmres Q(IogA n)
f rounds _

T Zan_ QaC a4 aaie) Ao 8 Lo <2 L e s o BT RS A WP 43 s A s Agn B Lo b2

» 3 coloring paths or cycles
+ can be solved in O(log* n) rounds
', . requwes Q(log* n) rounds




Locality



Locality

Concept that allows us to prove lower bounds even when:



Locality

Concept that allows us to prove lower bounds even when:

) messages can be arbitrarily large



Locality

Concept that allows us to prove lower bounds even when:
) messages can be arbitrarily large

p local computation is unbounded



Locality

Concept that allows us to prove lower bounds even when:
) messages can be arbitrarily large

p local computation is unbounded

'same view = same output”



Locality

Concept that allows us to prove lower bounds even when:
) messages can be arbitrarily large

p local computation is unbounded

'same view = same output”




Locality



Locality

If the size of the messages and the local computation is
unbounded, all synchronous T-round algorithms have a normal
form:



Locality

If the size of the messages and the local computation is
unbounded, all synchronous T-round algorithms have a normal
form:

®



Locality

If the size of the messages and the local computation is
unbounded, all synchronous T-round algorithms have a normal
form:

1. Gather the radius-T neighborhood

®



Locality

If the size of the messages and the local computation is
unbounded, all synchronous T-round algorithms have a normal
form:

1. Gather the radius-T neighborhood




Locality

If the size of the messages and the local computation is
unbounded, all synchronous T-round algorithms have a normal
form:

1. Gather the radius-T neighborhood

2. Perform some local computation




Locality

If the size of the messages and the local computation is
unbounded, all synchronous T-round algorithms have a normal
form:

1. Gather the radius-T neighborhood

2. Perform some local computation




Locality

If the size of the messages and the local computation is
unbounded, all synchronous T-round algorithms have a normal
form:

1. Gather the radius-T neighborhood

2. Perform some local computation




Locality

If the size of the messages and the local computation is
unbounded, all synchronous T-round algorithms have a normal
form:

1. Gather the radius-T neighborhood
2. Perform some local computation

3. Output a result




Locality (Example)

A 0-round algorithm is just a mapping from input to output

1 2\ 11
\ T

10

e
\* e

14



Locality (Example)

A 0-round algorithm is just a mapping from input to output




Locality (Example)

A 0-round algorithm is just a mapping from input to output




Locality (Example)




Locality (Example)




Locality (Example)




Locality (Example)




Locality (Example)




Locality (Example)




Locality (Example)




Locality (Example)

uuuuuuuuuu



Locality (Example)

A T1-round algorithm is just a mapping from radius-1 balls to outputs

I'm node 3,
I'm red, n=12

| have 1 green neighbor

with id 6 and degree 3



Locality (Example)

A T1-round algorithm is just a mapping from radius-1 balls to outputs

I'm node 3,
I'm red, n=12

| have 1 green neighbor

with id 6 and degree 3




Locality (Example)

A T1-round algorithm is just a mapping from radius-1 balls to outputs

1 \ - 11 I’'m node 3,

\ 4 I'm red, n=12

| have 1 ighb —
o f\Umeemme ) = output
\\ /
9 5
8

— 48



Locality (Example)

A T-round algorithm is just a mapping from radius-T balls to outputs

2
1 \4/11

10



Locality (Example)

A T-round algorithm is just a mapping from radius-T balls to outputs

¢ =




Locality

A T-round algorithm is just a mapping from radius-T balls to outputs.

12



Locality

A T-round algorithm is just a mapping from radius-T balls to outputs.

Proof by induction.

12



Locality

A T-round algorithm is just a mapping from radius-T balls to outputs.
Proof by induction.

» T =0. trivial

12



Locality

A T-round algorithm is just a mapping from radius-T balls to outputs.
Proof by induction.

» T =0. trivial

» T>0.

12



Locality

A T-round algorithm is just a mapping from radius-T balls to outputs.
Proof by induction.

» T =0. trivial

» T>0.

e assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

12



Locality

A T-round algorithm is just a mapping from radius-T balls to outputs.
Proof by induction.
» T =0. trivial
» T>0.
e assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

e prove. afterT rounds, the state of a node only depends on its T-radius neighborhood.

12



Locality

A T-round algorithm is just a mapping from radius-T balls to outputs.
Proof by induction.
» T =0. trivial
» T>0.
e assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

e prove. afterT rounds, the state of a node only depends on its T-radius neighborhood.

The state of node v attime T, depends on:

12



Locality

A T-round algorithm is just a mapping from radius-T balls to outputs.
Proof by induction.
» T =0. trivial
» T>0.
e assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

e prove. afterT rounds, the state of a node only depends on its T-radius neighborhood.

The state of node v attime T, depends on:

» The state of node v at time T-1, and

12



Locality

A T-round algorithm is just a mapping from radius-T balls to outputs.
Proof by induction.
» T =0. trivial
» T>0.
e assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

e prove. afterT rounds, the state of a node only depends on its T-radius neighborhood.

The state of node v attime T, depends on:
» The state of node v at time T-1, and

» The messages received by v at time T, that only depend on:

12



Locality

A T-round algorithm is just a mapping from radius-T balls to outputs.
Proof by induction.
» T =0. trivial
» T>0.
e assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

e prove. afterT rounds, the state of a node only depends on its T-radius neighborhood.

The state of node v attime T, depends on:
» The state of node v at time T-1, and
» The messages received by v at time T, that only depend on:

* the state of the neighbors of v at time T-1

12



Locality

A T-round algorithm is just a mapping from radius-T balls to outputs.
Proof by induction.
» T =0. trivial
» T>0.
e assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

e prove. afterT rounds, the state of a node only depends on its T-radius neighborhood.

The state of node v attime T, depends on:

» The state of node v at time T-1, and —

» The messages received by v at time T, that only depend on:

* the state of the neighbors of v at time T-1

12



Locality

A T-round algorithm is just a mapping from radius-T balls to outputs.
Proof by induction.
» T =0. trivial
» T>0.
e assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

e prove. afterT rounds, the state of a node only depends on its T-radius neighborhood.

The state of node v attime T, depends on:

» The state of node v at time T-1, and —

» The messages received by v at time T, that only depend on:

* the state of the neighbors of v at time T-1

—

12



Locality

A T-round algorithm is just a mapping from radius-T balls to outputs.
Proof by induction.
» T =0. trivial
» T>0.
e assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

e prove. afterT rounds, the state of a node only depends on its T-radius neighborhood.

The state of node v at time T, depends on: . | -
y inductive hypothesis:
» The state of node v at time T-1. and “ only depends on the (T-1)-radius neighborhood of v
» The messages received by v at time T, that only depend on:

* the state of the neighbors of v at time T-1

—

12



Locality

A T-round algorithm is just a mapping from radius-T balls to outputs.
Proof by induction.
» T =0. trivial
» T>0.
e assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

e prove. afterT rounds, the state of a node only depends on its T-radius neighborhood.

The state of node v at time T, depends on: . | -
y inductive hypothesis:
» The state of node v at time T-1. and “ only depends on the (T-1)-radius neighborhood of v
» The messages received by v at time T, that only depend on:

* the state of the neighbors of v at time T-1 . . -
by inductive hypothesis:
‘\ only depends on the (T-1)-radius neighborhood of the
neighbors of v 12



Locality

A T-round algorithm is just a mapping from radius-T balls to outputs.
Proof by induction.
» T =0. trivial
» T>0.
e assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

e prove. afterT rounds, the state of a node only depends on its T-radius neighborhood.

The state of node v at time T, depends on: . | -
y inductive hypothesis:
» The state of node v at time T-1. and “ only depends on the (T-1)-rad*ius neighborhood of v
» The messages received by v at time T, that only depend on:

* the state of the neighbors of v at time T-1 . . -
by inductive hypothesis:
‘\ only depends on the (T-1)-radius neighborhood of the
neighbors of v 12



Locality

A T-round algorithm is just a mapping from radius-T balls to outputs.
Proof by induction.
» T =0. trivial
» T>0.
e assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

e prove. afterT rounds, the state of a node only depends on its T-radius neighborhood.

The state of node v at time T, depends on: . | -
y inductive hypothesis:
» The state of node v at time T-1. and “ only depends on the (T-1)-rad*ius neighborhood of v
» The messages received by v at time T, that only depend on:

* the state of the neighbors of v at time T-1 . . -
by inductive hypothesis:
\ only depends on the (T-1)-radius neighborhood of the
neighbors of v 12



Locality

A T-round algorithm is just a mapping from radius-T balls to outputs.
Proof by induction.
» T =0. trivial
» T>0.
e assume: after T-1 rounds, the state of a node only depends on its (T-1)-radius neighborhood

e prove. afterT rounds, the state of a node only depends on its T-radius neighborhood.

The state of node v attime T, depends on: . . -
by inductive hypothesis:
» The state of node v at time T-1. and 4—__ only depends on the (T-1)-rad*ius neighborhood of v

» The messages received by v at time T, that only depend on: contained in the T-radius neighborhood of v

* the state of the neighbors of v at time T-1 . . -
by inductive hypothesis:
‘\ only depends on the (T-1)-radius neighborhood of the
neighbors of v 12



Main technique to prove lower bounds

same radius-T neighborhood

J

any T-round algorithm

outputs the same




Main technique to prove lower bounds

same radius-T neighborhood

J

any T-round algorithm

outputs the same

same view,

\ same output

(different algorithms may output different things, !
but all algorithms will output the same in both instances) \
2
\



Main technique to prove lower bounds

same radius-T neighborhood
v =1
any T-round algorithm ‘

outputs the same

same view,
same output

(different algorithms may output different things,
but all algorithms will output the same in both instances)




Main technique to prove lower bounds

same radius-T neighborhood

J

any T-round algorithm

outputs the same

same view,
same output

(different algorithms may output different things,
but all algorithms will output the same in both instances)




Main technique to prove lower bounds

It can be extended to randomized algorithms:

same radius-T view

b

same probability distribution

over the outputs

14



2-coloring




2-coloring

We can solve 2-coloring in O(n) rounds on paths

15



2-coloring

We can solve 2-coloring in O(n) rounds on paths

Yoo 000000

15



2-coloring

We can solve 2-coloring in O(n) rounds on paths

O—O—0O—0—0—0—0-C
- 00000000

15



2-coloring

We can solve 2-coloring in O(n) rounds on paths

O—O0— 000000

o0 0 0 060606

o0 0 0006060
A

15



2-coloring

We can solve 2-coloring in O(n) rounds on paths

O—O0— 000000
o0 0 0 060606
o0 0 0006060

15



2-coloring




2-coloring

We can solve 2-coloring in O(n) rounds on paths

16



2-coloring

We can solve 2-coloring in O(n) rounds on paths

16



2-coloring

We can solve 2-coloring in O(n) rounds on paths

1. Find minimum among endpoints

| ¥

16



2-coloring

We can solve 2-coloring in O(n) rounds on paths

1. Find minimum among endpoints

16



2-coloring

We can solve 2-coloring in O(n) rounds on paths
1. Find minimum among endpoints

2. Coloritred

16



2-coloring

We can solve 2-coloring in O(n) rounds on paths
1. Find minimum among endpoints

2. Coloritred

0000202020200

16



2-coloring

We can solve 2-coloring in O(n) rounds on paths
1. Find minimum among endpoints
2. Coloritred
3. Propagate

0000202020200

16



2-coloring

We can solve 2-coloring in O(n) rounds on paths
1. Find minimum among endpoints
2. Coloritred
3. Propagate

OaO0R02020202020 5

16



2-coloring

We can solve 2-coloring in O(n) rounds on paths
1. Find minimum among endpoints
2. Coloritred
3. Propagate

0020202020208 & &

16



2-coloring

We can solve 2-coloring in O(n) rounds on paths
1. Find minimum among endpoints
2. Coloritred
3. Propagate

020202020208 & & &

16



2-coloring

We can solve 2-coloring in O(n) rounds on paths
1. Find minimum among endpoints
2. Coloritred
3. Propagate

0J0SoNosoR ¥ X & ¥

16



2-coloring

We can solve 2-coloring in O(n) rounds on paths
1. Find minimum among endpoints
2. Coloritred
3. Propagate

OSOSoRO% RS SR S

16



2-coloring

We can solve 2-coloring in O(n) rounds on paths
1. Find minimum among endpoints
2. Coloritred
3. Propagate

16



2-coloring

We can solve 2-coloring in O(n) rounds on paths
1. Find minimum among endpoints
2. Coloritred
3. Propagate

16



2-coloring

We can solve 2-coloring in O(n) rounds on paths
1. Find minimum among endpoints
2. Coloritred
3. Propagate

16



2-coloring

We can solve 2-coloring in O(n) rounds on paths
1. Find minimum among endpoints
2. Coloritred
3. Propagate

16



2-coloring




2-coloring

We can prove that Q(n) rounds are required, even if:
» The value of n is known to all nodes
» IDs are exactly from {1, ..., n}

» Nodes can use randomization

17



2-coloring

We can prove that Q(n) rounds are required, even if:
» The value of n is known to all nodes
» IDs are exactly from {1, ..., n}

» Nodes can use randomization

O O0R0a0202020202020

17



2-coloring

We can prove that Q(n) rounds are required, even if:
» The value of n is known to all nodes
» IDs are exactly from {1, ..., n}

» Nodes can use randomization

"Of course these two nodes need to communicate,
! | hence this problem requires at least n-1 rounds"”

O O0R0a0202020202020

| 2

17



2-coloring

We can prove that Q(n) rounds are required, even if:
» The value of nis known to all nodes
» IDs are exactly from {1, ..., n}

» Nodes can use randomization

need to communicate,
s at least n-1 rounds"

"Of course these two

! | hence this problem

| 2

17



2-coloring

We can prove that Q(n) rounds are required, even if:
» The value of n is known to all nodes
» IDs are exactly from {1, ..., n}

» Nodes can use randomization

2-coloring paths can be solved in n/2+1 rounds

| 2

need to communicate,
s at least n-1 rounds"

"Of course these two

! | hence this problem

17



2-coloring lower bound



2-coloring lower bound

» We want to prove that coloring requires Q(n) on paths

18



2-coloring lower bound

¥

» We want to prove that coloring requires Q(n) on paths

18



2-coloring lower bound

» We want to prove that coloring requires Q(n) on paths

18



2-coloring lower bound

» We want to prove that coloring requires Q(n) on paths

» We will prove that any T(n)  o(n) rounds algorithm must fail

18



2-coloring lower bound

» We want to prove that coloring requires Q(n) on paths

» We will prove that any T(n)  o(n) rounds algorithm must fail

» T(n) €o(n): V€, 3No, vN>ng, T(N)<en

18



2-coloring lower bound

» We want to prove that coloring requires Q(n) on paths

» We will prove that any T(n)  o(n) rounds algorithm must fail

» T(n) € o(n):fv e}ano, v n>ng T(n) <en

18



2-coloring lower bound

» We want to prove that coloring requires Q(n) on paths

» We will prove that any T(n)  o(n) rounds algorithm must fail

y T(n) € o(n): v T g

18



2-coloring lower bound

» We want to prove that coloring requires Q(n) on paths

» We will prove that any T(n)  o(n) rounds algorithm must fail

» T(n) € o(n): v ¢, 3 nofv n > ol

18



2-coloring lower bound

» We want to prove that coloring requires Q(n) on paths

» We will prove that any T(n)  o(n) rounds algorithm must fail

» T(n) eo(n): Ve Ing, Vv

18



2-coloring lower bound

» We want to prove that coloring requires Q(n) on paths

» We will prove that any T(n)  o(n) rounds algorithm must fail

» T(n) €o(n): V€, 3No, vN>ng, T(N)<en

» ¢=1/5.3no,vn>no T(N)<n/5

18



2-coloring lower bound

» We want to prove that coloring requires Q(n) on paths

» We will prove that any T(n)  o(n) rounds algorithm must fail

» T(n) €o(n): V€, 3No, vN>ng, T(N)<en

18



2-coloring lower bound

» We want to prove that coloring requires Q(n) on paths

» We will prove that any T(n)  o(n) rounds algorithm must fail

» T(n) €o(n): V€, 3No, vN>ng, T(N)<en

For any n large enough

18



2-coloring lower bound

» We want to prove that coloring requires Q(n) on paths

» We will prove that any T(n)  o(n) rounds algorithm must fail

» T(n) €o(n): V€, 3No, vN>ng, T(N)<en

» ¢=1/5.3no,vn>no T(N)<n/5

18



2-coloring lower bound

» We want to prove that coloring requires Q(n) on paths

» We will prove that any T(n)  o(n) rounds algorithm must fail
» T(N)eo(n): Ve 3Ing, vn>no T(N)<en
» ¢=1/5.3no,vn>no T(N)<n/5

» If we take n large enough, the algorithm must terminate in less
than n/5 rounds.

18



2-coloring lower bound

» We want to prove that coloring requires Q(n) on paths

» We will prove that any T(n) € o(n) rounds algorithm must fail

» T(n) €o(n): V€, 3No, vN>ng, T(N)<en

) e=1/5.5|no,vn>no,T(n)<n/5

> If we take n Iarge enough the algorlthm must terminate in Iess

than n/5 rounds

18



2-coloring lower bound

» Let us prove that n/5 rounds are not enough, for all (large enough) n

» We use the principle of locality. We build two instances such that:

* There are two pairs of nodes that have the same view in both
Instances

* Such nodes cannot output the same in both instances

19



2-coloring lower bound



2-coloring lower bound

Forn=10, T = 2 is not enough

20



2-coloring lower bound

Forn=10, T = 2 is not enough

20



2-coloring lower bound

Forn=10, T = 2 is not enough

20



2-coloring lower bound

Forn=10, T = 2 is not enough

20



2-coloring lower bound

Forn=10, T = 2 is not enough

ONORORORORORORORORC
4 4

20



2-coloring lower bound

Forn=10, T = 2 is not enough

(060060 00oe
4 4

20



2-coloring lower bound

Forn=10, T = 2 is not enough

(060060 000e

’/_/

(OO OO OO

20



2-coloring lower bound

Forn=10, T = 2 is not enough

P> (O00OO0OO0OE

’/_/

= (050501000 0000

20



2-coloring lower bound

Forn=10, T = 2 is not enough

P> (O00OO0OO0OE

P —

+5ea@eeeeoo

20



2-coloring lower bound

Forn=10, T = 2 is not enough

> (0000000006
Q

+éeemaeoeeo

20



2-coloring lower bound



2-coloring lower bound

» Consider the path of length n, where there is an edge between nodes i and i+1

21



2-coloring lower bound

» Consider the path of length n, where there is an edge between nodes i and i+1

fltoSon @QQQ @G

21



2-coloring lower bound

» Consider the path of length n, where there is an edge between nodes i and i+1

» Create a new instance, obtained by removing the edges {n-1,n} and {n/5+1,n/5+2}, and
adding the edges {n/5+1,n} and {n,n/5+2}

21



2-coloring lower bound

» Consider the path of length n, where there is an edge between nodes i and i+1

» Create a new instance, obtained by removing the edges {n-1,n} and {n/5+1,n/5+2}, and
adding the edges {n/5+1,n} and {n,n/5+2}

» For large enough n, nodes 1 and (n/2+1) have the same radius-n/5 view, hence they must
output the same in both instances, but this is wrong (the distances of these nodes in the

two instances have different parity)

21



2-coloring lower bound (randomized)



2-coloring lower bound (randomized)

» The proof works for deterministic algorithms, but it can be extended to work
also for randomized algorithms

22



2-coloring lower bound (randomized)

» The proof works for deterministic algorithms, but it can be extended to work
also for randomized algorithms

» Main ingredient:

same radius-T neighborhood

O

same probability distribution

over the outputs

22



Coloring trees



Coloring trees

» The 3-coloring problem can be solved in:

23



Coloring trees

» The 3-coloring problem can be solved in:

* O(log n) rounds on trees

23



Coloring trees

» The 3-coloring problem can be solved in:
* O(log n) rounds on trees

* O(log* n) rounds on rooted trees

23



Coloring trees

» The 3-coloring problem can be solved in: ‘\ .\

* O(log n) rounds on trees

/\c

* O(log* n) rounds on rooted trees

» What can we do in o(log n) rounds on trees? Do we really need to have a
rooted tree to solve 3-coloring fast?

23



Coloring trees

» The 3-coloring problem can be solved in: \ \/ -

» O(log n) rounds on trees g O
R\ / e

* O(log* n) rounds on rooted trees

» What can we do in o(log n) rounds on trees? Do we really need to have a
rooted tree to solve 3-coloring fast?

» Coloring trees of maximum degree A with A colors requires Q(log, n) rounds

23



Coloring trees

» The 3-coloring problem can be solved in: \ \/ -
* O(log n) rounds on trees \V ™
o / e

* O(log* n) rounds on rooted trees

» What can we do in o(log n) rounds on trees? Do we really need to have a
rooted tree to solve 3-coloring fast?

» Coloring trees of maximum degree A with A colors requires Q(log, n) rounds
'» o(A/log A) coloring trees of maximum degree A requires Q(log, n) rounds |

23



Coloring trees

» The 3-coloring problem can be solved in: \ \/ -
* O(log n) rounds on trees \V ™
o / e

* O(log* n) rounds on rooted trees

» What can we do in o(log n) rounds on trees? Do we really need to have a
rooted tree to solve 3-coloring fast?

» Coloring trees of maximum degree A with A colors requires Q(log, n) rounds
'» o(A/log A) coloring trees of maximum degree A requires Q(log, n) rounds |

= 3-coloring trees of (large enough) constant degree requires Q(log n) rounds 2=



Coloring trees lower bound



Coloring trees lower bound

» o(A/log A) coloring trees of maximum degree A requires
((log, n) rounds

24



Coloring trees lower bound

Few”
|

» o(A/log A) coloring trees of maximum degree A requires
((log, n) rounds

24



Coloring trees lower bound

"Few"‘ o 3

» o(A/log A) coloring trees of maximum degree A requires
((log, n) rounds

24



Coloring trees lower bound

"Few"‘ o 3

» o(A/log A) coloring trees of maximum degree A requires
((log, n) rounds

» We use the fact that there are graphs that:

24



Coloring trees lower bound

"Few"‘ o 3

» o(A/log A) coloring trees of maximum degree A requires
((log, n) rounds

» We use the fact that there are graphs that:

* cannot be colored using o(A / log A) colors

24



Coloring trees lower bound

"Few"‘ o 3

» o(A/log A) coloring trees of maximum degree A requires
((log, n) rounds

"Large chromatic number”

4

* cannot be colored using o(A / log A) colors

» We use the fact that there are graphs that:

24



Coloring trees lower bound

"Few"‘ o 3

» o(A /log A) coloring trees of maximum degree A requires
((log, n) rounds

"Large chromatic number”

4

* cannot be colored using o(A / log A) colors

» We use the fact that there are graphs that:

» they look like a tree, in every o(log, n) radius
neighborhood

24



Coloring trees lower bound

"Few"‘ o 3

» o(A /log A) coloring trees of maximum degree A requires
((log, n) rounds

"Large chromatic number”

4

* cannot be colored using o(A / log A) colors

» We use the fact that there are graphs that:

» they look like a tree, in every o(log, n) radius

neighborhood X
"High girth’

24



Coloring trees lower bound

"Few"‘ o 3

» o(A /log A) coloring trees of maximum degree A requires
((log, n) rounds NOT Trees!"

&
» We use the fact that there are graphs that:

"Large chromatic number”

4

* cannot be colored using o(A / log A) colors

» they look like a tree, in every o(log, n) radius

neighborhood X
"High girth’

24



Coloring trees lower bound



Coloring trees lower bound

Theorem (Bollobas '78):

25



Coloring trees lower bound

Theorem (Bollobas '78):

There exists an infinite family H of n-node graphs where:

25



Coloring trees lower bound

Theorem (Bollobas '78):
There exists an infinite family H of n-node graphs where:

* all nodes have degree A

25



Coloring trees lower bound

Theorem (Bollobas '78):
There exists an infinite family H of n-node graphs where:
* all nodes have degree A

o the girthis O(log, n)

25



Coloring trees lower bound

Theorem (Bollobas '78):
There exists an infinite family H of n-node graphs where:
* all nodes have degree A

o the girthis O(log, n)

 the chromatic number is Q(A / log A)

25



Coloring trees lower bound

Theorem (Bollobas '78):
There exists an infinite family H of n-node graphs where:
* all nodes have degree A

o the girthis O(log, n)

 the chromatic number is Q(A / log A)

25



Coloring trees lower bound

Theorem (Bollobas '78):
There exists an infinite family H of n-node graphs where:
* all nodes have degree A

T=2

o the girthis O(log, n)

 the chromatic number is Q(A / log A)

25



Coloring trees lower bound

Theorem (Bollobas '78):
There exists an infinite family H of n-node graphs where:
* all nodes have degree A

T=2

o the girthis O(log, n)

 the chromatic number is Q(A / log A)

25



Coloring trees lower bound

Theorem (Bollobas '78):
There exists an infinite family H of n-node graphs where:
* all nodes have degree A

T=2

o the girthis O(log, n)

 the chromatic number is Q(A / log A)

25



Coloring trees lower bound

Theorem (Bollobas '78):
There exists an infinite family H of n-node graphs where:
* all nodes have degree A

T=2

o the girthis O(log, n)

 the chromatic number is Q(A / log A)

25



Coloring trees lower bound



Coloring trees lower bound

« We want to prove that o(A / log A) coloring trees of maximum degree A requires
O(log, n) rounds

26



Coloring trees lower bound

« We want to prove that o(A / log A) coloring trees of maximum degree A requires
O(log, n) rounds

 Let us assume that there is an algorithm A that colors trees using o(A / log A)
colors and runs in o(log, n) rounds. We show that we reach a contradiction

26



Coloring trees lower bound

« We want to prove that o(A / log A) coloring trees of maximum degree A requires
O(log, n) rounds

 Let us assume that there is an algorithm A that colors trees using o(A / log A)
colors and runs in o(log, n) rounds. We show that we reach a contradiction

« What happens if we run A on the graphs of the family H?

26



Coloring trees lower bound

« We want to prove that o(A / log A) coloring trees of maximum degree A requires
O(log, n) rounds

 Let us assume that there is an algorithm A that colors trees using o(A / log A)
colors and runs in o(log, n) rounds. We show that we reach a contradiction

« What happens if we run A on the graphs of the family H?

e [t must fail! Such graphs cannot be colored using o(A / log A) colors, since the
chromatic number is Q(A / log A)

26



Coloring trees lower bound

« We want to prove that o(A / log A) coloring trees of maximum degree A requires
O(log, n) rounds

 Let us assume that there is an algorithm A that colors trees using o(A / log A)
colors and runs in o(log, n) rounds. We show that we reach a contradiction

« What happens if we run A on the graphs of the family H?

e [t must fail! Such graphs cannot be colored using o(A / log A) colors, since the
chromatic number is Q(A / log A)

« We now prove that such failure implies that A must also fail on some specific tree

26



Coloring trees lower bound

27



Coloring trees lower bound

28



Coloring trees lower bound

28



Coloring trees lower bound

28



Coloring trees lower bound

28



Coloring trees lower bound

28



Coloring trees lower bound

29



Coloring trees lower bound

29



Coloring trees lower bound

29



Coloring trees lower bound

30



Coloring trees lower bound

A real tree

30



Coloring trees lower bound

A real tree

30



Coloring trees lower bound

A real tree

30



Coloring trees lower bound

31



Coloring trees lower bound

31



Coloring trees lower bound

31



Coloring trees lower bound

31



Coloring trees lower bound

31



Coloring trees lower bound

31



Coloring trees lower bound

31



Coloring trees lower bound

31



Coloring trees lower bound

31



Coloring trees lower bound

31



Coloring trees lower bound

Same size

e
7
7
7
. | //
‘ -
\
\
' \
\
\
\
' \
‘ ‘
\
\
! \
) \
| \
)

31



Coloring trees lower bound

Same size

e
7
7
7
. | //
‘ -
\
\
' \
\
\
\
' \
‘ ‘
\
\
! \
) \
| \
)

31



Coloring trees lower bound

Same size

31



Coloring trees lower bound

32



Coloring trees lower bound

Fail on a real tree!

32



Coloring trees lower bound



Coloring trees lower bound

« We want to prove that o(A / log A) coloring trees of maximum degree A requires
O(log, n) rounds

33



Coloring trees lower bound

« We want to prove that o(A / log A) coloring trees of maximum degree A requires
O(log, n) rounds

* Let us assume that there is an algorithm A that colors trees using o(A / log A)
colors and runs in o(log, n) rounds

33



Coloring trees lower bound

« We want to prove that o(A / log A) coloring trees of maximum degree A requires
((log, n) rounds

* Let us assume that there is an algorithm A that colors trees using o(A / log A)
colors and runs in o(log, n) rounds

« We run A on the graphs of the family H (graphs that are A-regular, with girth
((log, n), and chromatic number Q(A / log A)). It must fail!

33



Coloring trees lower bound

« We want to prove that o(A / log A) coloring trees of maximum degree A requires
((log, n) rounds

* Let us assume that there is an algorithm A that colors trees using o(A / log A)
colors and runs in o(log, n) rounds

« We run A on the graphs of the family H (graphs that are A-regular, with girth
((log, n), and chromatic number Q(A / log A)). It must fail!

« We take two neighboring nodes that gave the same output, and the subgraph T°
incuced by the union of their views. We create a tree T containing T' as a subtree

33



Coloring trees lower bound

« We want to prove that o(A / log A) coloring trees of maximum degree A requires
((log, n) rounds

* Let us assume that there is an algorithm A that colors trees using o(A / log A)
colors and runs in o(log, n) rounds

« We run A on the graphs of the family H (graphs that are A-regular, with girth
((log, n), and chromatic number Q(A / log A)). It must fail!

« We take two neighboring nodes that gave the same output, and the subgraph T°
incuced by the union of their views. We create a tree T containing T' as a subtree

A must fail on the tree T. Contradiction!

33



Coloring trees lower bound

« We want to prove that o(A / log A) coloring trees of maximum degree A requires
((log, n) rounds

-> Let us assume that there is an algorithm A that colors trees using o(A / log A)
colors and runs in o(log, n) rounds

« We run A on the graphs of the family H (graphs that are A-regular, with girth
((log, n), and chromatic number Q(A / log A)). It must fail!

« We take two neighboring nodes that gave the same output, and the subgraph T°
incuced by the union of their views. We create a tree T containing T' as a subtree

A must fail on the tree T. Contradiction!

33



Coloring trees lower bound

- ° We want to prove that o(A / log A) coloring trees of maximum degree A requires
((log, n) rounds

* Let us assume that there is an algorithm A that colors trees using o(A / log A)
colors and runs in o(log, n) rounds

« We run A on the graphs of the family H (graphs that are A-regular, with girth
((log, n), and chromatic number Q(A / log A)). It must fail!

« We take two neighboring nodes that gave the same output, and the subgraph T°
incuced by the union of their views. We create a tree T containing T' as a subtree

A must fail on the tree T. Contradiction!

33



Coloring trees lower bound

« We want to prove that o(A / log A) coloring trees of maximum degree A requires
((log, n) rounds

* Let us assume that there is an algorithm A that colors trees using o(A / log A)
colors and runs in o(log, n) rounds

« We run A on the graphs of the family H (graphs that are A-regular, with girth
((log, n), and chromatic number Q(A / log A)). It must fail!

« We take two neighboring nodes that gave the same output, and the subgraph T°
incuced by the union of their views. We create a tree T containing T' as a subtree

A must fail on the tree T. Contradiction!

33



Coloring trees lower bound



Coloring trees lower bound

» We saw how to prove:

34



Coloring trees lower bound

» We saw how to prove:

* Coloring trees of maximum degree A with o(A / log A) colors requires
((log, n) rounds

34



Coloring trees lower bound

» We saw how to prove:

* Coloring trees of maximum degree A with o(A / log A) colors requires
((log, n) rounds

» It is possible to prove:

34



Coloring trees lower bound

» We saw how to prove:

* Coloring trees of maximum degree A with o(A / log A) colors requires
((log, n) rounds

» It is possible to prove:

» Coloring trees of maximum degree A with A colors requires Q(log, n)
rounds

34



Coloring trees lower bound

» We saw how to prove:

* Coloring trees of maximum degree A with o(A / log A) colors requires
((log, n) rounds

» It is possible to prove:

» Coloring trees of maximum degree A with A colors requires Q(log, n)
rounds

* Different techniques are required to prove such result

34



Coloring trees lower bound

» We saw how to prove:

* Coloring trees of maximum degree A with o(A / log A) colors requires
((log, n) rounds

» It is possible to prove:

» Coloring trees of maximum degree A with A colors requires Q(log, n)
rounds

* Different techniques are required to prove such result

* Note that, if A=0(1), then (A+1)-coloring can be solved in just O(log* n)

34



Coloring paths and cycles



Coloring paths and cycles

» 3-coloring paths or cycles can be done in O(log* n) rounds

35



Coloring paths and cycles

» 3-coloring paths or cycles can be done in O(log* n) rounds

* log* n grows very slowly, but it is not a constant

35



Coloring paths and cycles

» 3-coloring paths or cycles can be done in O(log* n) rounds
* log* n grows very slowly, but it is not a constant

» Can we do better? Can we solve 3-coloring in O(1)?

35



Coloring paths and cycles

» 3-coloring paths or cycles can be done in O(log* n) rounds
* log* n grows very slowly, but it is not a constant

» Can we do better? Can we solve 3-coloring in O(1)?

» | 3-coloring paths or cycles requires Q(log* n) rounds |

35



Coloring paths and cycles

» 3-coloring paths or cycles can be done in O(log* n) rounds
* log* n grows very slowly, but it is not a constant

» Can we do better? Can we solve 3-coloring in O(1)?

4 3 colorlng paths or Cycles reqmres Q(Iog* n) rounds

[L|n|aI 87] [Naor '01] [Naor Stockmeyer 93] [Laurlnharju Suomela '"14]

35



Coloring paths and cycles

» 3-coloring paths or cycles can be done in O(log* n) rounds
* log* n grows very slowly, but it is not a constant

» Can we do better? Can we solve 3-coloring in O(1)?

4 3 colorlng paths or Cycles reqmres Q(Iog* n) rounds

[L|n|aI 87] [Naor '01] [Naor Stockmeyer 93] [Laurlnharju Suomela '"14]

13

Deterministic

35



Coloring paths and cycles

» 3-coloring paths or cycles can be done in O(log* n) rounds
* log* n grows very slowly, but it is not a constant

» Can we do better? Can we solve 3-coloring in O(1)?

4 3 colorlng paths or Cycles reqmres Q(Iog* n) rounds

[L|n|aI 87] [Naor '01] [Naor Stockmeyer 93] [Laurlnharju Suomela '"14]

1} t

Deterministic Randomized

35



Coloring paths and cycles

» 3-coloring paths or cycles can be done in O(log* n) rounds
* log* n grows very slowly, but it is not a constant

» Can we do better? Can we solve 3-coloring in O(1)?

4 3 colorlng paths or Cycles reqmres Q(Iog* n) rounds

[L|n|aI 87] [Naor '01] [Naor Stockmeyer 93] [Laurlnharju Suomela '"14]

1} t )

Deterministic Randomized With Ramsey theory

35



Coloring paths and cycles

» 3-coloring paths or cycles can be done in O(log* n) rounds
* log* n grows very slowly, but it is not a constant

» Can we do better? Can we solve 3-coloring in O(1)?

4 3 colorlng paths or Cycles reqmres Q(Iog* n) rounds

[L|n|aI 87] [Naor '01] [Naor Stockmeyer 93] [Laurlnharju Suomela '"14]

1} t ) X

Deterministic Randomized With Ramsey theory Easier proof

35



Coloring paths and cycles

» 3-coloring paths or cycles can be done in O(log* n) rounds
* log* n grows very slowly, but it is not a constant

» Can we do better? Can we solve 3-coloring in O(1)?

4 3 colorlng paths or Cycles reqmres Q(Iog* n) rounds

[L|n|aI 87] [Naor 91] [Naor Stockmeyer 93][aurlnhairJuSuomeIaM]

1 4 Yy X

Deterministic Randomized With Ramsey theory Easier proof

35



Coloring paths and cycles



Coloring paths and cycles

» Simple observation:

36



Coloring paths and cycles

» Simple observation:

* Assume nodes of a cycle have unique IDs in {1, ..., n}

36



Coloring paths and cycles

» Simple observation:
* Assume nodes of a cycle have unique IDs in {1, ..., n}

* We can color the nodes with n colors in 0 rounds

36



Coloring paths and cycles

» Simple observation:
* Assume nodes of a cycle have unique IDs in {1, ..., n}

* We can color the nodes with n colors in 0 rounds

36



Coloring paths and cycles

» Simple observation:
* Assume nodes of a cycle have unique IDs in {1, ..., n}

* We can color the nodes with n colors in 0 rounds

6900000@6

Takes color 9

36



Coloring paths and cycles

» Simple observation:
* Assume nodes of a cycle have unique IDs in {1, ..., n}
* We can color the nodes with n colors in 0 rounds

e We cannot color the nodes with n-1 colors in 0 rounds

36



Coloring paths and cycles

» Simple observation:
* Assume nodes of a cycle have unique IDs in {1, ..., n}
* We can color the nodes with n colors in 0 rounds

e We cannot color the nodes with n-1 colors in 0 rounds

600000@6

Takes color 7 Takes color 7

36



Coloring paths and cycles

» Simple observation:
* Assume nodes of a cycle have unique IDs in {1, ..., n}
* We can color the nodes with n colors in 0 rounds

e We cannot color the nodes with n-1 colors in 0 rounds

600000@6

Takes color 7 Takes color 7

36



Coloring paths and cycles

» Simple observation:
* Assume nodes of a cycle have unique IDs in {1, ..., n}
* We can color the nodes with n colors in 0 rounds

e We cannot color the nodes with n-1 colors in 0 rounds

600000@6

Takes color 7 Takes color 7

™\
0502020202020205020

36



Coloring paths and cycles

» Simple observation:
* Assume nodes of a cycle have unique IDs in {1, ..., n}
* We can color the nodes with n colors in 0 rounds

e We cannot color the nodes with n-1 colors in 0 rounds

—

We cannot color the nodes
with o(n) colors in 0 rounds

36



Coloring paths and cycles



Coloring paths and cycles

1. We cannot color the nodes with o(n) colors in 0 rounds

37



Coloring paths and cycles

1. We cannot color the nodes with o(n) colors in 0 rounds
2. If c-coloring can be solved in T rounds, then Zc—coloring can be solved in T-1 rounds

37



Coloring paths and cycles

1. We cannot color the nodes with o(n) colors in 0 rounds
2. If c-coloring can be solved in T rounds, then Zc—coloring can be solved in T-1 rounds

» Suppose we can solve o(log n)-coloring in 1 round. Then, by (2) we can solve o(n)-coloring in 0
rounds, that is a contradiction with (1)

37



Coloring paths and cycles

1. We cannot color the nodes with o(n) colors in 0 rounds
2. If c-coloring can be solved in T rounds, then Zc-coloring can be solved in T-1 rounds

» Suppose we can solve o(log n)-coloring in 1 round. Then, by (2) we can solve o(n)-coloring in 0
rounds, that is a contradiction with (1)

» We cannot color the nodes with o(log n) colors in 1 round

37



Coloring paths and cycles

1. We cannot color the nodes with o(n) colors in 0 rounds
2. If c-coloring can be solved in T rounds, then Zc-coloring can be solved in T-1 rounds

» Suppose we can solve o(log n)-coloring in 1 round. Then, by (2) we can solve o(n)-coloring in 0
rounds, that is a contradiction with (1)

» We cannot color the nodes with o(log n) colors in 1 round

» We cannot color the nodes with o(log log n) colors in 2 rounds

37



Coloring paths and cycles

1. We cannot color the nodes with o(n) colors in 0 rounds
2. If c-coloring can be solved in T rounds, then Zc-coloring can be solved in T-1 rounds

» Suppose we can solve o(log n)-coloring in 1 round. Then, by (2) we can solve o(n)-coloring in 0
rounds, that is a contradiction with (1)

» We cannot color the nodes with o(log n) colors in 1 round
» We cannot color the nodes with o(log log n) colors in 2 rounds

» We cannot color the nodes with o(log log log n) colors in 3 rounds

37



Coloring paths and cycles

1. We cannot color the nodes with o(n) colors in 0 rounds
2. If c-coloring can be solved in T rounds, then Zc-coloring can be solved in T-1 rounds

» Suppose we can solve o(log n)-coloring in 1 round. Then, by (2) we can solve o(n)-coloring in 0
rounds, that is a contradiction with (1)

» We cannot color the nodes with o(log n) colors in 1 round
» We cannot color the nodes with o(log log n) colors in 2 rounds

» We cannot color the nodes with o(log log log n) colors in 3 rounds

37



Coloring paths and cycles

1. We cannot color the nodes with o(n) colors in 0 rounds
2. If c-coloring can be solved in T rounds, then Zc-coloring can be solved in T-1 rounds

» Suppose we can solve o(log n)-coloring in 1 round. Then, by (2) we can solve o(n)-coloring in 0
rounds, that is a contradiction with (1)

» We cannot color the nodes with o(log n) colors in 1 round
» We cannot color the nodes with o(log log n) colors in 2 rounds

» We cannot color the nodes with o(log log log n) colors in 3 rounds

» We cannot color the nodes with O(1)-colors in o(log*n) rounds

37



Coloring paths and cycles

1. We cannot color the nodes with o(n) colors in 0 rounds
2. If c-coloring can be solved in T rounds, then 2c-coloring can be solved in T-1 rounds

» Suppose we can solve o(log n)-coloring in 1 round. Then, by (2) we can solve o(n)-coloring in 0
rounds, that is a contradiction with (1)

» We cannot color the nodes with o(log n) colors in 1 round
» We cannot color the nodes with o(log log n) colors in 2 rounds

» We cannot color the nodes with o(log log log n) colors in 3 rounds

» We cannot color the nodes with O(1)-colors in o(log*n) rounds

» We cannot color the nodes with 3-colors in o(log*n) rounds -



Coloring algorithms



Coloring algorithms

» We can see an algorithm A as a function satisfying that:

38



Coloring algorithms

» We can see an algorithm A as a function satisfying that:

T=2

02010505030 2020,0S 0=

38



Coloring algorithms

» We can see an algorithm A as a function satisfying that:
An(x1l coey X2T+1) S {11 2; 3}

T=2

02010505030 2020,0S 0=

38



Coloring algorithms

» We can see an algorithm A as a function satisfying that:
An(x1l coey X2T+1) S {11 2; 3}

T=2

02010505030 2020,0S 0=

38



Coloring algorithms

» We can see an algorithm A as a function satisfying that:
An(x1l coey X2T+1) S {11 2; 3}

T=2

02010505030 2020,0S 0=

38



Coloring algorithms

» We can see an algorithm A as a function satisfying that:
An(x1l coey X2T+1) S {11 2; 3}

T=2

02010505030 2020,0S 0=
Al -O--()) 3

38



Coloring algorithms

» We can see an algorithm A as a function satisfying that:
An(x1l coey X2T+1) S {11 2; 3}

T=2

00 05030305070, 0O0
An() =1 An() =2

8



Coloring algorithms

» We can see an algorithm A as a function satisfying that:
An(x1l coey X2T+1) S {11 2; 3}

An(x1; cocy x2T+1) = AI‘I(XZI cocy x2T+2)

assuming x4, ..., Xo14+2 are all distinct numbers from {1, ..., n}

T=2

00 05030305070, 0O0
A (o ) - A @O @) =2

38



Coloring functions



Coloring functions

» A is a k-ary c-coloring function if:

39



Coloring functions

» A is a k-ary c-coloring function if:
A.(xq, ..., Xx) €11, 2, ..., ¢}

An(Xq, ..., Xk) # An(Xo, ..., Xks1)

assuming x4, ..., Xi+1 are all distinct numbers from {1, ..., n}

39



Coloring functions

» A is a k-ary c-coloring function if:
A.(Xq, ..., X)) € {1, 2, ..., ¢}

An(Xq, ..., Xk) # An(Xo, ..., Xks1)

assuming x4, ..., Xx+1 are all distinct numbers from {1, ..., n}

o
An(4,9,2,6,8)<{1,2,3)

39



Coloring functions

» A is a k-ary c-coloring function if:
A.(Xq, ..., X)) € {1, 2, ..., ¢}

An(Xq, ..., Xk) # An(Xo, ..., Xks1)

assuming x4, ..., Xx+1 are all distinct numbers from {1, ..., n}

An(4,9,2,6,8)<{1,2,3) An(4,9,2,6)<{1, ..., 10}

39



Coloring functions

» A is a k-ary c-coloring function if:
A.(xq, ..., Xx) €11, 2, ..., ¢}

An(Xq, ..., Xk) # An(Xo, ..., Xks1)

assuming x4, ..., Xi+1 are all distinct numbers from {1, ..., n}

An(4,9,2,6,8)<{1,2,3) An(4,9,2,6)<{1, ..., 10}

2y

4-ary 10-coloring function =0



Coloring functions

» A is a k-ary c-coloring function if:
A.(xq, ..., Xx) €11, 2, ..., ¢}

An(Xq, ..., Xk) # An(Xo, ..., Xks1)

assuming x4, ..., Xi+1 are all distinct numbers from {1, ..., n}

40



Coloring functions

» A is a k-ary c-coloring function if:
A.(Xq, ..., X)) € {1, 2, ..., ¢}
An(Xq, ..., Xk) # An(Xo, ..., Xks1)
assuming x4, ..., Xx+1 are all distinct numbers from {1, ..., n}

satisfying 1 s X1 X2 ... S XS Xpp1 S0

40



Coloring functions

» A is a k-ary c-coloring function if:
A.(Xq, ..., X)) € {1, 2, ..., ¢}
Aq(Xq, ..., Xk) 2 Ap(X2, ..., Xk+1)
assuming x4, ..., Xx+1 are all distinct numbers from {1, ..., n}
satisfying 1 s X1 X2 ... S XS Xpp1 S0

5
An(4,9,2,6,8)<{1,2,3)

40



Coloring functions

» A is a k-ary c-coloring function if:
A.(Xq, ..., X)) € {1, 2, ..., ¢}
An(Xq, ..., Xk) # An(Xo, ..., Xks1)
assuming x4, ..., Xx+1 are all distinct numbers from {1, ..., n}

satisfying 1 s X1 X2 ... S XS Xpp1 S0

v .OF0:)
An(4l 91 : ) S {11 21 3}

An(4,9, 2, 6, 8) is undefined

40



Coloring functions

» A is a k-ary c-coloring function if:
A.(Xq, ..., X)) € {1, 2, ..., ¢}
An(Xq, ..., Xk) # An(Xo, ..., Xks1)
assuming x4, ..., Xx+1 are all distinct numbers from {1, ..., n}

satisfying 1 s X1 X2 ... S XS Xpp1 S0

A"(4t 91 ‘ ) - {11 21 3} An(2, 4, 6, 8, 9) € {1, 2, 3}

An(4,9, 2, 6, 8) is undefined 40




Coloring functions

» A is a k-ary c-coloring function if:
A.(xq, ..., Xx) €11, 2, ..., ¢}
Aq(Xq, ..., Xk) 2 Ap(X2, ..., Xk+1)
assuming x4, ..., Xi+1 are all distinct numbers from {1, ..., n}
satisfying 1 s X1 X2 ... S XS Xpp1 S0

» Any algorithm for 3-coloring defines a 2T+1-ary 3-coloring
function

47



Coloring functions

» A is a k-ary c-coloring function if:
A.(xq, ..., Xx) €11, 2, ..., ¢}
Aq(Xq, ..., Xk) 2 Ap(X2, ..., Xk+1)
assuming x4, ..., Xi+1 are all distinct numbers from {1, ..., n}
satisfying 1 s X1 X2 ... S XS Xpp1 S0

» Any algorithm for 3-coloring defines a 2T+1-ary 3-coloring

function
We cannot use a function to construct an algorithm.

f(4,9, 2, 6, 8) is undefined! "



Coloring functions



Coloring functions

» We will prove that for any k-ary 3-coloring function:

42



Coloring functions

» We will prove that for any k-ary 3-coloring function:

k+1 = log* n

42



Coloring functions

» We will prove that for any k-ary 3-coloring function:
k+1 = log* n

» Since a 2T+1-rounds coloring algorithm implies a 2T+1-ary 3-
coloring function, we get that

42



Coloring functions

» We will prove that for any k-ary 3-coloring function:
k+1 = log* n

» Since a 2T+1-rounds coloring algorithm implies a 2T+1-ary 3-
coloring function, we get that

2T+2 = log* n

42



Coloring functions

» We will prove that for any k-ary 3-coloring function:
k+1 = log* n

» Since a 2T+1-rounds coloring algorithm implies a 2T+1-ary 3-
coloring function, we get that

2T+2 = log* n
T = Q(log* n)

42



Coloring functions

» We will prove that for any k-ary 3-coloring function:

» Since a 2T+1-rounds coloring algorithm implies a 2T+1-ary 3-
coloring function, we get that

2T+2 = log* n
T = Q(log* n)

» We prove this statement by induction

42



Coloring functions (base case)



Coloring functions (base case)

» For any T1-ary c-coloring function:

cz2nh

43



Coloring functions (base case)

» For any T1-ary c-coloring function:
c=n

» Proof by contradiction. Assume that a 1-ary c-coloring function exists,
such thatc < n

43



Coloring functions (base case)

» For any T1-ary c-coloring function:
c=n

» Proof by contradiction. Assume that a 1-ary c-coloring function exists,
such thatc < n

» There must exist two numbers 1 = x; < x; = n such that

An(x;) = A, (xj)

43



Coloring functions (base case)

» For any T1-ary c-coloring function:
c=n

» Proof by contradiction. Assume that a 1-ary c-coloring function exists,
such thatc < n

» There must exist two numbers 1 = x; < x; = n such that

An (xi) = An (xj)

If 1S X1SXoS ... S XS X1 SN,

then An(Xq, ..., Xk) 2 An(X2, ..., Xks1) "



Coloring functions (base case)

» For any T1-ary c-coloring function:
c=n

» Proof by contradiction. Assume that a 1-ary c-coloring function exists,
such thatc < n

» There must exist two numbers 1 = x; < x; = n such that

An (xi) = An (xj)

If 1S X1SXoS ... S XS X1 SN, If 1 <X{sX,<n,

then A, (x4, ..., xi) # A (¢, ..., Xis1) then A, (xq) # A,(x5) "



Coloring functions (base case)

» For any T1-ary c-coloring function:
c=n

» Proof by contradiction. Assume that a 1-ary c-coloring function exists,
such thatc < n

» There must exist two numbers 1 = x; < x; = n such that

An(x;) = An(x;)

If 1S X1SXoS ... S XS X1 SN, If 1 <X{sX,<n,

then A, (x4, ..., xi) # A (¢, ..., Xis1) then A, (xq) # A,(x5) "



Coloring functions (inductive case)



Coloring functions (inductive case)

» We are given A, that is a k-ary c-coloring function

44



Coloring functions (inductive case)

» We are given A, that is a k-ary c-coloring function

» We show that we can construct B, a k-1-ary 2“-coloring function

4.4



Coloring functions (inductive case)

» We are given A, that is a k-ary c-coloring function

» We show that we can construct B, a k-1-ary 2“-coloring function

» Proof:

4.4



Coloring functions (inductive case)

» We are given A, that is a k-ary c-coloring function

» We show that we can construct B, a k-1-ary 2“-coloring function
» Proof:

We define By(xq, ..., Xk-1) = { An(X1, -0y X1, Y) | N2Y> X4 1}

4.4



Coloring functions (inductive case)

» We are given A, that is a k-ary c-coloring function

» We show that we can construct B, a k-1-ary 2“-coloring function
» Proof:

We define B, — %] = (Arf

o] V) | N2y > X )

4.4



Coloring functions (inductive case)

» We are given A, that is a k-ary c-coloring function

» We show that we can construct B, a k-1-ary 2“-coloring function

» Proof:

We define B, (x4, ..., Xi.1) = { A (x4, ..., xk_1, )l nzy>xeq}

4.4



Coloring functions (inductive case)

» We are given A, that is a k-ary c-coloring function

» We show that we can construct B, a k-1-ary 2“-coloring function
» Proof:

We define By(xq, ..., Xk-1) = { An(X1, -0y X1, Y) | N2Y> X4 1}

Notice that there are 2° possible outputs

4.4



Coloring functions (inductive case)

» We are given A, that is a k-ary c-coloring function

» We show that we can construct B, a k-1-ary 2“-coloring function
» Proof:

We define By(xq, ..., Xk-1) = { An(X1, -0y X1, Y) | N2Y> X4 1}

Notice that there are 2° possible outputs B10(2,4,5,7)

4.4



Coloring functions (inductive case)

» We are given A, that is a k-ary c-coloring function

» We show that we can construct B, a k-1-ary 2“-coloring function
» Proof:

We define By(xq, ..., Xk-1) = { An(X1, -0y X1, Y) | N2Y> X4 1}

Notice that there are 2° possible outputs B10(2,4,5,7)
= {

4.4



Coloring functions (inductive case)

» We are given A, that is a k-ary c-coloring function

» We show that we can construct B, a k-1-ary 2“-coloring function
» Proof:
We define B,(xy, ..., Xk-1) = { An(X1, --o, Xk-1, Y) | N2y > Xg-1}
Notice that there are 2° possible outputs B10(2,4,5,7)

= {
A10(2,4,5,7,8),

4.4



Coloring functions (inductive case)

» We are given A, that is a k-ary c-coloring function

» We show that we can construct B, a k-1-ary 2“-coloring function
» Proof:

We define By(xq, ..., Xk-1) = { An(X1, -0y X1, Y) | N2Y> X4 1}

Notice that there are 2° possible outputs B10(2,4,5,7)
= {

A10(2,4,5,7,8),

A10(2,4,5,7,9),

4.4



Coloring functions (inductive case)

» We are given A, that is a k-ary c-coloring function

» We show that we can construct B, a k-1-ary 2“-coloring function
» Proof:

We define By(xq, ..., Xk-1) = { An(X1, -0y X1, Y) | N2Y> X4 1}

Notice that there are 2° possible outputs B10(2,4,5,7)
= {
A10(2,4,5,7,8),
A10(2,4,5,7,9),
A10(2,4,5,7,10)



Coloring functions (inductive case)

» We are given A, that is a k-ary c-coloring function

» We show that we can construct B, a k-1-ary 2“-coloring function
» Proof:

We define By(xq, ..., Xk-1) = { An(X1, -0y X1, Y) | N2Y> X4 1}

Notice that there are 2° possible outputs B10(2,4,5,7)
= {
A10(2,4,5,7,8),
A10(2,4,5,7,9),
A10(2,4,5,7,10)
} 44



Coloring functions (inductive case)

» We are given A, that is a k-ary c-coloring function

» We show that we can construct B, a k-1-ary 2“-coloring function
» Proof:

We define By(xq, ..., Xk-1) = { An(X1, -0y X1, Y) | N2Y> X4 1}

Notice that there are 2° possible outputs B10(2,4,5,7)
L . . =1
Let us now prove that it is a coloring function A10(2,4,5,7,8),
A10(2,4,5,7,9),

A10(2,4,5,7,10)
} 4.4



Coloring functions (inductive case)



Coloring functions (inductive case)

> Bo(Xq, ooy X)) = { ALKy ooy X Y) I NZY > X4 )
» We need to prove that:
B (X4, --e) Xp.q1) 2 B (X5, ..., X )
assuming x., ..., x, are all distinct numbers from {1, ..., n}

satisfying T s x;=x,= .S X S X. =N

45



Coloring functions (inductive case)

g Bn(X1, *° xk-1) = {An(x1i e xk-1, Y) | n2 Y Z Xg-1 }
B (X4, --e) Xp.q1) 2 B (X5, ..., X )

assuming x., ..., x, are all distinct numbers from {1, ..., n}

» We need to prove that:

satisfying T s x;=x,= .S X S X. =N

45



Coloring functions (inductive case)

> Bo(Xq, ooy X)) = { ALKy ooy X Y) I NZY > X4 )
» Assume for a contradiction that:
B, (X1, -.e, Xp.q1) = B (X5, ..., X;)
assuming x., ..., x, are all distinct numbers from {1, ..., n}

satisfying T s x;=x,= .S X S X. =N

46



Coloring functions (inductive case)

> Bo(Xq, ooy X)) = { ALKy ooy X Y) I NZY > X4 )
» Assume for a contradiction that:
B, (X1, -.e, Xp.q1) = B (X5, ..., X;)
assuming x., ..., x, are all distinct numbers from {1, ..., n}
satisfying T = x, s x,= ... s X <X, =N

p Letx=A_ (%, ..., %)

46



Coloring functions (inductive case)

Bn(x1, coey Xk-1) -
> Bo(Xq, ooy X)) = { ALKy ooy X Y) I NZY > X4 )

» Assume for a contradiction that:
B, (X1, -.e, Xp.q1) = B (X5, ..., X;)
assuming x., ..., x, are all distinct numbers from {1, ..., n}
satisfying T s x;=x,= .S X S X. =N

p Letx=A_ (%, ..., %)

46



Coloring functions (inductive case)

Bn(x1, coey Xk-1) —

> B (Xq, ooy Xp1) ={AX, e X V) | N2Y> X4} { An(X1, ..., Xk-1 Y) | yis larger than xg-1 }

» Assume for a contradiction that:
B, (X1, -.e, Xp.q1) = B (X5, ..., X;)
assuming x., ..., x, are all distinct numbers from {1, ..., n}
satisfying T s x;=x,= .S X S X. =N

» Letx=A_(x, ..., %)

46



Coloring functions (inductive case)

Bn(X1, ooy Xk-1) =
{An(x1, ..., Xk-1 Y) | Yis larger than x-1}
» Assume for a contradiction that: SINCe X > X

B, (X1, --ey Xi.1) = Bo(Xs, ..oy X )

assuming x., ..., x, are all distinct numbers from {1, ..., n}

> Bo(Xq, ooy X)) = { ALKy ooy X Y) I NZY > X4 )

satisfying T s x;=x,= .S X S X. =N

p Letx=A_ (%, ..., %)

46



Coloring functions (inductive case)

Bn(X1, ooy Xk-1) =
{An(x1, ..., Xk-1 Y) | Yis larger than x-1}
» Assume for a contradiction that: SINCe X > X

> Bo(Xq, ooy X)) = { ALKy ooy X Y) I NZY > X4 )

B (Xq, «-e) Xp.1) = B (X5, ..., X;) then x = An(X1, ..., Xk-1, Xk) € Bn(X1, ..., Xk-1)
assuming x., ..., x, are all distinct numbers from {1, ..., n}
satisfying T = x, s x,= ... s X <X, =N

p Letx=A_ (%, ..., %)

46



Coloring functions (inductive case)

Bn(X1, ooy Xk-1) =
{An(x1, ..., Xk-1 Y) | Yis larger than x-1}
» Assume for a contradiction that: SINCe X > X

> Bo(Xq, ooy X)) = { ALKy ooy X Y) I NZY > X4 )

Bn(x1, oo Xk_1) = Bn(le cee) Xk) then X = An(x1, coey Xk-1, Xk) € Bn(x1, coey Xk-1)
assuming x., ..., x, are all distinct numbers from {1, ..., n}
satisfying T = x, s x,= ... s X <X, =N
» Letx=A_(x, ..., %)

» By definition of B, we have that x € B_ (x,, ..., ;1)

46



Coloring functions (inductive case)

Bn(X1, ooy Xk-1) =
{An(x1, ..., Xk-1 Y) | Yis larger than x-1}
» Assume for a contradiction that: SINCE Xk > Xi.n

> Bo(Xq, ooy X)) = { ALKy ooy X Y) I NZY > X4 )

Bp(Xq, +es X1) = Bp(Xy, --cy Xy then x = An(X1, ..., Xk-1, Xk) € Bn(X1, ..., Xk-1)
assuming1, . k eII dii nubers from {1, ..., n}
satisfying T s x;=x,= .S X S X. =N

» Letx=A_(x, ..., %)

» By definition of B, we have that x € B_ (x,, ..., ;1)

46



Coloring functions (inductive case)

Bn(X1, ooy Xk-1) =
{An(x1, ..., Xk-1 Y) | Yis larger than x-1}

> Bo(Xq, ooy X)) = { ALKy ooy X Y) I NZY > X4 )

» Assume for a contradiction that: since Xk > Xk

' Bn(x1, oo Xk_1) = Bn(le cee) Xk) ', then X = An(x1, coey Xk-1, Xk) € Bn(X1, coey xk-1)

assumin1, ., k ' i uers from {1, ..., n}
satisfying T s x;=x,= .S X S X. =N

» Letx=A_(x, ..., %)

» By definition of B, we have that x € B, (x,, ..., ;1)

» By assumption, we also have x € B (x,, ..., %)

46



Coloring functions (inductive case)

Bn(X1, ooy Xk-1) =
{An(x1, ..., Xk-1 Y) | Yis larger than x-1}

> Bo(Xq, ooy X)) = { ALKy ooy X Y) I NZY > X4 )

» Assume for a contradiction that: since Xk > Xk

' Bn(x1, oo Xk_1) = Bn(le cee) Xk) ', then X = An(x1, coey Xk-1, Xk) € Bn(X1, coey xk-1)

assuming x., ..., x, are all distinct numbers from {1, ..., n}
' ' < < < < < <

satisfying 1 = x;=x,= ... =X =X =n Bu(%2, ..., %) contains x

» Letx=A_(x, ..., %)

» By definition of B, we have that x € B_ (x,, ..., ;1)

» By assumption, we also have x € B (x,, ..., %)

46



Coloring functions (inductive case)

Bn(X1, ooy Xk-1) =
{An(x1, ..., Xk-1 Y) | Yis larger than x-1}

> Bo(Xq, ooy X)) = { ALKy ooy X Y) I NZY > X4 )

» Assume for a contradiction that: since Xk > Xk

' Bn(x1, oo Xk_1) = Bn(le cee) Xk) ', then X = An(x1, coey Xk-1, Xk) € Bn(X1, coey xk-1)

assuming x., ..., x, are all distinct numbers from {1, ..., n}
' ' < < < < < <

satisfying 1 = x;=x,= ... =X =X =n Bu(%2, ..., %) contains x

» Letx=A_(x, ..., %) =

» By definition of B, we have that x € B_ (x,, ..., ;1)

» By assumption, we also have x € B (x,, ..., %)

46



Coloring functions (inductive case)

Bn(X1, ooy Xk-1) =
{An(x1, ..., Xk-1 Y) | Yis larger than x-1}

> Bo(Xq, ooy X)) = { ALKy ooy X Y) I NZY > X4 )

» Assume for a contradiction that: since Xk > Xk

' Bn(x1, oo Xk_1) = Bn(le cee) Xk) ', then X = An(x1, coey Xk-1, Xk) € Bn(X1, coey xk-1)

assuming x., ..., x, are all distinct numbers from {1, ..., n}
' ' < < < < < <

satisfying T s x; s x5 .S =X, =N Bn(X2, ..., Xi) CONtAINS X

» Letx=A_(x, ..., %) =

» By definition of B, we have that x € B_ (x,, ..., ;1) 3y = xx such that A.(xs, ..., Xk y) = X

» By assumption, we also have x € B (x,, ..., %)

46



Coloring functions (inductive case)

Bn(X1, ..., Xk-1) =
> Bo(Xq, ooy Xp1) ={AXq, o Xg i V) [ N2Y > X} { An(X1, ..., Xk-1.Y) | y is larger than xi-1 }

» Assume for a contradiction that: since Xk > Xk

Bt - Xr) = By -, %) then x = An(x, . X1, X6) < Ba(x . X
assumin \ ubers from {1, ..., n}
satisfying T = x, s x,= ... s X <X, =N Bn(X2, ..., Xi) CONtAINS X
» Letx=A_(x, ..., %) =
» By definition of B, we have that x € B_ (x,, ..., ;1) 3y > xx such that An(xs, ..., Xk y) = X
» By assumption, we also have x € B (x,, ..., %)

» This implies that there exists some y > x, such that A (x,, ..., X, y) = x

46



Coloring functions (inductive case)

Bn(x1, coey Xk-1) =

B, (X1, -.c) X)) =L AL(Xq, ..oy X nzy>Xx :
> B(Xq, oees Xiq) = {Ag(Xq, ey Xiq, ¥) | Y > X1} { An(Xs, ..., Xk-1 Y) | Y is larger than xk-1 }
» Assume for a contradiction that: _ since X« > Xk.1
' Bn(x1, oo Xk_1) = Bn(le cee) Xk) ', then X = An(x1, coey Xk-1, Xk) € Bn(X1, coey xk-1)

assumin1, . k ' i uers from {1, ..., n}
satisfying T = x, s x,= ... s X <X, =N Bn(X2, ..., Xi) CONtAINS X
p Letx=A_ (%, ..., %) =

» By definition of B, we have that x € B_ (x,, ..., ;1) 3y > xx such that An(xs, ..., Xk y) = X
» By assumption, we also have x € B (x,, ..., %)

» This implies that there exists some y > x, such that A (x,, ..., X, y) = x

y A (X1, ..., X ) = A (X, ..., Xy y), such that y > x,, contradiction! y



Coloring functions (putting things together)



Coloring functions (putting things together)

e Given:



Coloring functions (putting things together)

e Given:

 a T-rounds coloring algorithm that solves 3-coloring

47



Coloring functions (putting things together)

* Given:
 a T-rounds coloring algorithm that solves 3-coloring

 We construct:

47



Coloring functions (putting things together)

* Given:
 a T-rounds coloring algorithm that solves 3-coloring
* We construct:

* a k-ary 3-coloring function, where k=2T+1

47



Coloring functions (putting things together)

* Given:

 a T-rounds coloring algorithm that solves 3-coloring
* We construct:

* a k-ary 3-coloring function, where k=2T+1

* a k-ary 2?-coloring function

47



Coloring functions (putting things together)

* Given:

 a T-rounds coloring algorithm that solves 3-coloring
* We construct:

* a k-ary 3-coloring function, where k=2T+1

* a k-ary 2?-coloring function

* a k-1-ary 2?*-coloring function

47



Coloring functions (putting things together)

* Given:

 a T-rounds coloring algorithm that solves 3-coloring
* We construct:

* a k-ary 3-coloring function, where k=2T+1

* a k-ary 2?-coloring function

* a k-1-ary 2?*-coloring function

*a k-2-ary 2222-coloring function

47



Coloring functions (putting things together)

* Given:

 a T-rounds coloring algorithm that solves 3-coloring
* We construct:

* a k-ary 3-coloring function, where k=2T+1

* a k-ary 2?-coloring function

* a k-1-ary 2?*-coloring function

*a k-2-ary 2222-coloring function

47



Coloring functions (putting things together)

 Given:

 a T-rounds coloring algorithm that solves 3-coloring
* We construct:

* a k-ary 3-coloring function, where k=2T+1

* a k-ary 2?-coloring function

* a k-1-ary 2?*-coloring function

* a k-2-ary 22%’-coloring function

» a 1-ary “*'2-coloring function (*'2 is a power tower of height k+1)

47



Coloring functions (putting things together)

 Given:
 a T-rounds coloring algorithm that solves 3-coloring
* We construct:
* a k-ary 3-coloring function, where k=2T+1
* a k-ary 2?-coloring function
* a k-1-ary 2?*-coloring function
* a k-2-ary 22%’-coloring function
» a 1-ary “*'2-coloring function (*'2 is a power tower of height k+1)

* In the base case we proved that “*'2 = n, which implies k+1 = log* n, hence T = Q(log* n)

47



Coloring functions (putting things together)

* Given:
 a T-rounds coloring algorithm that solves 3-coloring
* We construct:
* a k-ary 3-coloring function, where k=2T+71
» a k-ary 2%-coloring function If c-coloring can be solved in T rounds,

» a k-1-ary 2%*-coloring function then 2c-coI0ring can be solved in T-1 rounds.

*a k-2-ary 2222-coloring function

» a 1-ary “*'2-coloring function (*'2 is a power tower of height k+1)

* In the base case we proved that “*'2 = n, which implies k+1 = log* n, hence T = Q(log* n)

47



Coloring functions (putting things together)

* Given:
 a T-rounds coloring algorithm that solves 3-coloring
* We construct:

* a k-ary 3-coloring function, where k=2T+1

* a k-ary 2?-coloring function | If c-coloring can be solved in T rounds,

" a k-1-ary 2%-coloring function L then 2 -coloring can be solved in T"1 rounds, §

*a k-2-ary 2222-coloring function

» a 1-ary “*'2-coloring function (*'2 is a power tower of height k+1)

* In the base case we proved that “*'2 = n, which implies k+1 = log* n, hence T = Q(log* n)

47



Round elimination technique



Round elimination technique

e Given:

48



Round elimination technique

 Given:
o algorithm A, solves problem P, in T rounds

48



Round elimination technique

 Given:
o algorithm A, solves problem P, in T rounds

« We construct:

48



Round elimination technique

 Given:
o algorithm A, solves problem P, in T rounds

 We construct:
» algorithm A, solves problem P, in T - 1 rounds

48



Round elimination technique

 Given:
o algorithm A, solves problem P, in T rounds

 We construct:
» algorithm A, solves problem P, in T - 1 rounds

» algorithm A, solves problem P, in T - 2 rounds

48



Round elimination technique

 Given:
o algorithm A, solves problem P, in T rounds

 We construct:
» algorithm A, solves problem P, in T - 1 rounds

o algorithm A, solves problem P, in T - 2 rounds
» algorithm A3 solves problem P in T - 3 rounds

48



Round elimination technique

 Given:
o algorithm A, solves problem P, in T rounds

 We construct:
» algorithm A, solves problem P, in T - 1 rounds

o algorithm A, solves problem P, in T - 2 rounds
» algorithm A3 solves problem P in T - 3 rounds

o algorithm A7 solves problem P+ in 0 rounds

48



Round elimination technique

 Given:
o algorithm A, solves problem P, in T rounds

 We construct:
» algorithm A, solves problem P, in T - 1 rounds

o algorithm A, solves problem P, in T - 2 rounds
» algorithm A3 solves problem P in T - 3 rounds

o algorithm A7 solves problem P+ in 0 rounds

 We prove:

48



Round elimination technique

 Given:
o algorithm A, solves problem P, in T rounds

 We construct:
» algorithm A, solves problem P, in T - 1 rounds

o algorithm A, solves problem P, in T - 2 rounds
» algorithm A3 solves problem P in T - 3 rounds

o algorithm A7 solves problem P+ in 0 rounds

 We prove:

» P+ cannot be solved in 0 rounds, so Ay
cannot exist

48



Round elimination technique

 Given:
o algorithm A, solves problem P, in T rounds

 We construct:
» algorithm A, solves problem P, in T - 1 rounds

o algorithm A, solves problem P, in T - 2 rounds
» algorithm A3 solves problem P in T - 3 rounds

» algorithm A+ solves problem P+ in 0 rounds Given a problem P, satisfying that

« We prove: the correctness of the solution
, can be checked locally,
« Py cannot be solved in 0 rounds, so Ay the problem P.,. can be defined

cannot exist mechanically [Brandt "19]

48



