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If the size of the messages and the local computation is
unbounded, all synchronous T-round algorithms have a normal
form:

1. Gather the radius-T neighborhood
2. Perform some local computation

3. Output a result
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It can be extended to randomized algorithms:

same radius-T view

b

same probability distribution

over the outputs
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2-coloring

We can prove that Q(n) rounds are required, even if:
» The value of n is known to all nodes
» IDs are exactly from {1, ..., n}

» Nodes can use randomization

2-coloring paths can be solved in n/2+1 rounds

| 2

need to communicate,
s at least n-1 rounds"

"Of course these two

! | hence this problem
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2-coloring lower bound

» Let us prove that n/5 rounds are not enough, for all (large enough) n

» We use the principle of locality. We build two instances such that:

* There are two pairs of nodes that have the same view in both
Instances

* Such nodes cannot output the same in both instances

19
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» Consider the path of length n, where there is an edge between nodes i and i+1

» Create a new instance, obtained by removing the edges {n-1,n} and {n/5+1,n/5+2}, and
adding the edges {n/5+1,n} and {n,n/5+2}

» For large enough n, nodes 1 and (n/2+1) have the same radius-n/5 view, hence they must
output the same in both instances, but this is wrong (the distances of these nodes in the

two instances have different parity)
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» The proof works for deterministic algorithms, but it can be extended to work
also for randomized algorithms

» Main ingredient:

same radius-T neighborhood

O

same probability distribution

over the outputs
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* Coloring trees of maximum degree A with o(A / log A) colors requires
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» It is possible to prove:

» Coloring trees of maximum degree A with A colors requires Q(log, n)
rounds

* Different techniques are required to prove such result

* Note that, if A=0(1), then (A+1)-coloring can be solved in just O(log* n)
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» A is a k-ary c-coloring function if:
A.(xq, ..., Xx) €11, 2, ..., ¢}
Aq(Xq, ..., Xk) 2 Ap(X2, ..., Xk+1)
assuming x4, ..., Xi+1 are all distinct numbers from {1, ..., n}
satisfying 1 s X1 X2 ... S XS Xpp1 S0

» Any algorithm for 3-coloring defines a 2T+1-ary 3-coloring

function
We cannot use a function to construct an algorithm.

f(4,9, 2, 6, 8) is undefined! "
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» We will prove that for any k-ary 3-coloring function:

» Since a 2T+1-rounds coloring algorithm implies a 2T+1-ary 3-
coloring function, we get that

2T+2 = log* n
T = Q(log* n)

» We prove this statement by induction

42
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» We show that we can construct B, a k-1-ary 2“-coloring function
» Proof:

We define By(xq, ..., Xk-1) = { An(X1, -0y X1, Y) | N2Y> X4 1}

Notice that there are 2° possible outputs B10(2,4,5,7)
L . . =1
Let us now prove that it is a coloring function A10(2,4,5,7,8),
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y A (X1, ..., X ) = A (X, ..., Xy y), such that y > x,, contradiction! y
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Round elimination technique

 Given:
o algorithm A, solves problem P, in T rounds

 We construct:
» algorithm A, solves problem P, in T - 1 rounds

o algorithm A, solves problem P, in T - 2 rounds
» algorithm A3 solves problem P in T - 3 rounds

» algorithm A+ solves problem P+ in 0 rounds Given a problem P, satisfying that

« We prove: the correctness of the solution
, can be checked locally,
« Py cannot be solved in 0 rounds, so Ay the problem P.,. can be defined

cannot exist mechanically [Brandt "19]
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