CONGEST model

bandwidth limitations

Alkida Balliu
University of Freiburg

Part of the slides are from Jukka Suomela

CONGEST model

» LOCAL model: arbitrarily large messages

» CONGEST model: O(log n)-bit messages

CONGEST model

+ Any of these can be encoded in O(log n)-bit messages:

» node identifier
> number of nodes
» number of edges

» distance between two nodes ...

CONGEST model

» Many algorithms that we have seen use small messages
> can be used directly in CONGEST:
- Example: coloring algorithms seen in the lectures

* There are some exceptions

Solving everything in LOCAL

» Gather the whole graph + solve the problem locally (e.g., by brute force)
> O(diam(G)) rounds

» See animation here:
https://jukkasuomela.fi/animations/local-horizon.gif

https://jukkasuomela.fi/animations/local-horizon.gif

Algorithm Gather

 May need Q(n?)-bit messages

» Nodes have IDs from 1ton

Algorithm Gather

 May need Q(n?)-bit messages

» Nodes have IDs from 1ton

Algorithm Gather

 May need Q(n?)-bit messages

> Round 1

Algorithm Gather

 May need Q(n?)-bit messages

> Round 2

Algorithm Gather

 May need Q(n?)-bit messages

> Round 3

Algorithm Gather

 May need Q(n?)-bit messages

» Round 3, send the adjacency matrix

Q(n?) bits

Algorithm Gather

 May need Q(n?)-bit messages

» Cannot directly be used in CONGEST

» Exercise: gather all the graph in CONGEST in O(|E|) rounds

CONGEST model

» O(n) time trivial in the LOCAL model

> brute force approach: Gather + solve locally

* O(n) time non-trivial in the CONGEST model

Today

» How to find all-pairs shortest paths (APSP) in O(n) time in the CONGEST
model [Holzer, Wattenhofer]

» Lower bound of Q(n / log n) rounds for APSP
[Frischknecht, Holzer, Wattenhofer]

(Complexity of APSP in CONGEST: ©(n / log n))

Single-source shortest paths

Input:
:> ®
3

Single-source shortest paths

Distances from s

Output:

BEFS tree

Input:
> ®
3

BEFS tree

* Distances from s + shortest paths

0

Output: ()

All-pairs shortest paths

Input: 1

All-pairs shortest paths

Algorithm Wave

» Solves single-source shortest paths (SSSP) in time O(diam(G))
 Leader/source sends a message “wave”, switches to state 0, stops

« Wave received in round t for the first time:
send “wave’, switch to state t, stop

» In time O(diam(G)) all nodes receive the wave

Algorithm Wave

Algorithm BFS

- Wave + handshakes
* Tree construction:
> “proposal” + “accept”
> everyone knows their parent & children

+ Acknowledgements back from leaf nodes

Algorithm BFS

Algorithm BFS

=

Algorithm BFS

Algorithm BFS

Algorithm BFS

Algorithm BFS

Algorithm BFS

O
Ack 1 5
O=0
Ack

Algorithm Leader

» Each node creates a separate BFS process

> each node v pretends to be the root

>~ messages of the BFS started by v contain ID(v)

» When two BFS processes “collide”, the one with the smaller root “wins”

> each node only needs to send messages related to one BFS process

 One tree wins everyone else — leader

Recap until now

« SSSP: Wave algorithm
» BFS tree: Wave algorithm + acceptance/rejections

» Leader election: Many BFS in parallel

» All these problems can be solved in O(diam(G)) rounds in the CONGEST
model

Algorithm APSP

» Basic idea: run Wave from each node

 Challenge: congestion

Algorithm APSP

» Basic idea: run Wave from each node

 Challenge: congestion

> all waves parallel > too many bits per edge

<50 O(n log n) bits
8

Algorithm APSP

» Basic idea: run Wave from each node

» Challenge: congestion

> all waves parallel > too many bits per edge

> all waves sequentially > takes too long

Algorithm APSP

» Basic idea: run Wave from each node

» Challenge: congestion

> all waves parallel > too many bits per edge

> all waves sequentially > takes too long
» Solution: pipelining

> all waves in parallel in such a way that each node propagates at most one
wave per round

Algorithm APSP

Algorithm APSP

 Elect leader

Algorithm APSP

 Elect leader, construct BFS tree

S
NS

Algorithm APSP

 Move token along BFS tree slowly (every 2 rounds)

o
V%

Algorithm APSP

 Move token along BFS tree slowly (every 2 rounds)

S
NS

Algorithm APSP

 Move token along BFS tree slowly (every 2 rounds)

/<—<> .
N 7

Algorithm APSP

 Move token along BFS tree slowly (every 2 rounds)

=
Nz

Algorithm APSP

 Move token along BFS tree slowly (every 2 rounds)

/<—<> .
NS 7

Algorithm APSP

 Move token along BFS tree slowly (every 2 rounds)

o
N

Algorithm APSP - Animation

» See animation here: https://jukkasuomela.fi/apsp/

https://jukkasuomela.fi/apsp/

Algorithm APSP: no collisions

Claim: at each round, a node has to propagate only one wave

Algorithm APSP: no collisions

Claim: at each round, a node has to propagate only one wave

» Suppose, for a contradiction that this is not the case

Algorithm APSP: no collisions

Claim: at each round, a node has to propagate only one wave
» Suppose, for a contradiction that this is not the case

» d(u, wi) =x,d(u, w2) =y

Algorithm APSP: no collisions

Claim: at each round, a node has to propagate only one wave
» Suppose, for a contradiction that this is not the case
» d(u, wi) =x,d(u, w2) =y

ox¢y

Algorithm APSP: no collisions

Claim: at each round, a node has to propagate only one wave
» Suppose, for a contradiction that this is not the case
» d(u, wi) =x,d(u, w2) =y

cXZY

» w.l.o.g. x>y

Algorithm APSP: no collisions

Claim: at each round, a node has to propagate only one wave

» Suppose, for a contradiction that this is not the case

» d(u, wi) =x,d(u, w2) =y <
° X ¢ y
» w.l.o.g. x>y

» dlwr, w2) s (x-y)/ 2 W1

Algorithm APSP: no collisions

Claim: at each round, a node has to propagate only one wave

» Suppose, for a contradiction that this is not the case

» d(u, wi) =x,d(u, w2) =y <
* XZY

* w.l.o.g. x>y
» d(wr, w2) < (x-y) /2 e

e x<sy+(x-y)/2

Algorithm APSP: no collisions B by d |

VQ \/\06@ W,

Claim: at each round, a node has to propagate only one wave JCZ - WA ““k Wy

» Suppose, for a contradiction that this is not the case

. d(U, W1) = X, d(U, WZ) =y AM\@M 8 wl@mc\((Va X—\q g\<
T% wad ¢ o({(io\f W
* XZY L%)M\W;\%Mw!gg W, = Z“@

- w.log. x>y o bl 2
Aw\\ WY S ff/—% W
d(w1, w2) < (x-y) / 2 AR g
- - = NS
X<sy+(x-y)/2 =— UK\\/\,\AQ = OK(M/(«JLH A(w,,w,)
I - T ﬁ,w k—Q \
= VY \U\Wk (\/\9%/

Algorithm APSP: no collisions

Claim: at each round, a node has to propagate only one wave

» Suppose, for a contradiction that this is not the case

+ d(u,wr) =x,d(u, w2) =y <
c XZY

* w.l.o.g. x>y
» d(wr, w2) < (x-y)/ 2 e
e x<sy+(x-y)/2

* x =y contradiction!

Algorithm APSP: runtime

» Leader + BFS: O(diam(G)) rounds

* |[E|Ina BFStree:n-1

» Token traverses 2 times each edge of the BFS tree

« Total number of rounds:

> 2(2(n - 1)) + O(diam(G)) € O(n) rounds

Pipelining

* n operations, each operation takes time t

» Parallel: t rounds, bad congestion

 Sequential: nt rounds, no congestion

» Pipelining: n + t rounds, no congestion

Lower bound for APSP

APSP requires Q(n / log n) rounds

Lower bound for APSP

Lower bound of Q(n / log n) for computing the diameter

o

Lower bound of Q(n / log n) for APSP

Lower bound for APSP

Lower bound of Q(n / log n) for computing the diameter

o

Lower bound of Q(n / log n) for APSP

1. Show that a lower bound for computing the diameter implies the same
lower bound for APSP

2. Focus only on the lower bound for computing the diameter

From APSP to Diameter

» Given a solution for APSP, we can compute the diameter in O(diam(G))
rounds

From APSP to Diameter

» Given a solution for APSP, we can compute the diameter in O(diam(G))
rounds

> Each node stores the maximum length of all its shortest paths in G

From APSP to Diameter

» Given a solution for APSP, we can compute the diameter in O(diam(G))
rounds

> Each node stores the maximum length of all its shortest paths in G

> Construct a BFS tree in O(diam(G))

From APSP to Diameter

» Given a solution for APSP, we can compute the diameter in O(diam(G))
rounds

> Each node stores the maximum length of all its shortest paths in G
> Construct a BFS tree in O(diam(G))

> Leaves send their maximum distance to parent

From APSP to Diameter

» Given a solution for APSP, we can compute the diameter in O(diam(G))
rounds

> Each node stores the maximum length of all its shortest paths in G
> Construct a BFS tree in O(diam(G))
> Leaves send their maximum distance to parent

> Non-leaves compute the maximum distance among their own and the ones of
its children, send to parent

From APSP to Diameter

» Given a solution for APSP, we can compute the diameter in O(diam(G))
rounds

> Each node stores the maximum length of all its shortest paths in G
> Construct a BFS tree in O(diam(G))
> Leaves send their maximum distance to parent

> Non-leaves compute the maximum distance among their own and the ones of
its children, send to parent

» Broadcast the value of the diameter

Diameter lower bound = APSP lower bound

» Compute diameter in: T(APSP) + O(diam(G)) rounds

» |f computing the diameter requires Q(n / log n) rounds

v

+ APSP must require Q(n / log n) rounds
in all graphs with diameter o(n / log n)

>~ T(APSP) + o(n / logn) € Q(n / log n) = T(APSP) € Q(n / log n)

Diameter lower bound = APSP lower bound

» Compute diameter in: T(APSP) + O(diam(G)) rounds

» |f computing the diameter requires Q(n / log n) rounds

v

+ APSP must require Q(n / log n) rounds
in all graphs with diameter o(n / log n) =

>~ T(APSP) + o(n / logn) € Q(n / log n) = T(APSP) € Q(n / log n)

Computing the diameter

»+ Computing the diameter requires Q(n/log n) [Frischknecht, Holzer, Wattenhofer]

* The proof uses known results from 2-party communication complexity

> Studies the minimum amount of communication (number of bits) needed in
order to compute functions whose arguments are distributed among several
parties

> Set disjointness between 2 communication parties

Set disjointness

Set disjointness

Set disjointness

Set disjointness

Set disjointness

Set disjointness

« 4 8c{1,2, ..,k

Set disjointness
« 4 8c{1,2, ..,k

- Output: 1if #n &=0; 0 otherwise

Set disjointness

« 4 B8c{1,2,..,k}

- Output: 1if #n &=0; 0 otherwise

» String of k bits: 1 in position i if the i-th element is present, 0 otherwise

Set disjointness

Alice and Bob need to exchange Q(k) bits in order to solve set disjointness

AW\ML l@(F AR g e 1ed aﬂ%ah%ms
QN “\k AULQ g&%@b VAT Sbw@& raudyw AN

Computing the diameter: Lower bound 1dea

Computing the diameter: Lower bound 1dea

Algorithm that computes the diameter — Solution to the set disjointness
problem

O

¥ N /B

k O(vk) O(vk) k

Computing the diameter: Lower bound 1dea

Diameter = 4 = the sets are disjoint

Diameter = 5 = the sets are not disjoint

- A
W) i

O

Computing the diameter: Lower bound 1dea

Diameter in o(n / log n) rounds = Diameter exchanging o(k) bits =

Set disjointness exchanging o(k) bits = Contradict the lower bound

N [

O

Lower bound for computing the diameter

o o o O 0O O

Lower bound for computing the diameter

o O o O 0O O

Lower bound for computing the diameter

Lower bound for computing the diameter

O

A Y

O

o o O O O O
O

O

Lower bound for computing the diameter

N

N
\\&

: &

ik

70 D
: %@Nd)

Vi

I o -0 - - 000 -

> .
O

Lower bound for computing the diameter

N

0N
\\&

: &

ik

70 D
: %@Nd)

Vi

I o -0 - - 000 -

> .
O

Lower bound for computing the diameter

AN
RN

g

O %\)

ik

70 D
: %@Nd)

Vi

I o -0 - - 000 -

> .
O

Lower bound for computing the diameter

N
0N

o

-

ik

70 D
: %@Nd)

Vi

I o -0 - - 000 -

> .
O

Lower bound for computing the diameter

N
N

\\&
: \é

ik

70 D
: %@Nd)

Vi

I o -0 - - 000 -

> .
O

Lower bound for computing the diameter

ik

70 D
: %@Nd)

Vi
I O—_,O0O—_=000 —

Lower bound for computing the diameter

Lower bound for computing the diameter

o OO0 - OO0 0O
®
—

Lower bound for computing the diameter

o O =000 —
®
—

Lower bound for computing the diameter

o 0O) =000 —
®
—

Lower bound for computing the diameter

O QO /) =000
O O
—

Lower bound for computing the diameter

o O - OO0 -
O O
—

Lower bound for computing the diameter

O 0O A 0O 00O0 -
OEN®
e
e
~—~—

Lower bound for computing the diameter

O 0O =" =000 =
O
—
v/

Lower bound for computing the diameter

O =R O =m0 00 -
O
—
N

Lower bound for computing the diameter

7
-
Y/

i O =0 =" =0 0O 0O —
I O =" a0 OO0 = a0,

Lower bound for computing the diameter

\\\\C\ K>/////
WY/
WAL K

I OO0 2000

Lower bound for computing the diameter

Diameter = 4 if the sets are disjoint, otherwise diameter 2 5

PO~ 7 S
SRS \ W/ I
11/ o/ AN
; /Y I

7V

L~

Lower bound for computing the diameter

Sets are not disjoint, diameter = 5

ik

¥/

AN =
AN L.
IS

SEUNLS U/ ///

Y/
O % ?g/ O
R V.

—/ /

"y N
Ny

Vi

NN
o JI Wi g JS WL W Wy e R g .

OO 00 ®m =20

Lower bound for computing the diameter

Sets are not disjoint, diameter = 5

ik

¥/

AN b
I\

SEUNLS U/ ///

. \\x / / / ©
O % ?g/ O
R V.

—/ /

"y N
M oy

Vi

NN
o JI Wi g JS WL W Wy e R g .

OO 00 ®m =20

Lower bound for computing the diameter

Sets are not disjoint, diameter = 5

ik

¥/

- %L@

\ V.

"y N
M oy

Vi

NN
o JI Wi g JS WL W Wy e R g .

OO 00 ®m =20

Lower bound for computing the diameter

Sets are not disjoint, diameter = 5

ik

¥/

"y N
Gy

Vi

NN
o JI Wi g JS WL W Wy e R g .

O of CK\ (
S
® O
OO —_200==2=20
. : ";@ N

Lower bound for computing the diameter

Sets are not disjoint, diameter = 5

:\\\ / 7
@5 m\\)‘ (J ////O
N \ 1)

o JI Wi g JS WL W Wy e R g .
OO 00 m 2220

\\ e S o

O

O o
O O O O
-\ V.

Lower bound for computing the diameter

Sets are not disjoint, diameter = 5

ik

¥/

7

C O

Q/ O

"y N
Gy

Vi

NN
o JI Wi g JS WL W Wy e R g .

OO 00 ®m =20

Lower bound for computing the diameter

Sets are not disjoint, diameter = 5

ik

¥/

"y N
Gy

Vi

NN
o JI Wi g JS WL W Wy e R g .

N/
W
i

OO 00 ®m =20

O O O O
e <
O O o

Lower bound for computing the diameter

Sets are not disjoint, diameter = 5

—
‘ Wi

O—H D Ao
oWy %L@
M W
O

\ V.

ik

¥/

"y N
Gy

Vi

NN
o JI Wi g JS WL W Wy e R g .

OO 00 ®m =20

Lower bound for computing the diameter

Sets are not disjoint, diameter = 5

—
‘ Wi

O—H D Lo
RN %L@
A W
O

\ V.

ik

¥/

"y N
Gy

Vi

NN
o JI Wi g JS WL W Wy e R g .

OO 00 ®m =20

Lower bound for computing the diameter

Sets are disjoint, diameter = 4

ik

e

AN =
RV N7
Ty

O—1O @/ /// O
o /i
O % ?g/ O
- V .

N __/

. o
N

Vi

TN
O—=0 =000 -

OO —_r000—=-20

Lower bound for computing the diameter

Sets are disjoint, diameter = 4

ik

e

AN L
N

O O @/ /// O
RN .
O % %/ O
o V.

_/ __/

£ s
‘\ %@Nd)

Vi

O -0 " =-000=

OO —_r000—=-20

Lower bound for computing the diameter

Sets are disjoint, diameter = 4

ik

e

£ s
‘\ %@Nd)

Vi

O -0 " =-000=

)\C\\ 7 4
%x\\

5 O
oo -0 00— -QO

Lower bound for computing the diameter

Sets are disjoint, diameter = 4

ik

e

o)

£ s
‘\ %@Nd)

Vi

O -0 " =-000=

OO —_r000—=-20

S/
S/
O O ng/ O
-\ V.

Lower bound for computing the diameter

Sets are disjoint, diameter = 4

ik

e

AN T
AN

/7\&&
\ \f/J‘é o)

Vi

O—=0 =000 -

OO —_r000—=-20

i
/i
O O ng/ O
-\ V.

Lower bound for computing the diameter

Sets are disjoint, diameter = 4

ik

e

N7
Y

O o @/ ///

Y i/
O % %/ O
- V.

_/ __/

. o
N

Vi

TN
O—=0 =000 -

OO —_r000—=-20

Lower bound for computing the diameter

Sets are disjoint, diameter = 4

ik

e

RN I 7
.

O o @/ ///

. -
O % %/ O
- V.

_/ __/

. o
NGy

Vi

TN
O—=0 =000 -

OO —_r000—=-20

Lower bound for computing the diameter

Sets are disjoint, diameter = 4

DN \
\\\\K 3/////
. I/

)
S
- J

_/ __/

ik

e

. o
NGy

Vi

TN
O—=0 =000 -

OO —_r000—=-20

o O O O

Lower bound for computing the diameter

Sets are disjoint, diameter = 4

ik

e

. o
N

Vi

\\

O = 0O =0 O 0 -
O
7
7
§§
O O

OO 0000

Lower bound for computing the diameter

Sets are disjoint, diameter = 4

f\é“ O\\\\ ® ® ////O
/)

S

\\

/B
L A

OO —_r000—=-20

OO0 - - 000 =
O
—
/
%ﬁ/

Lower bound for computing the diameter

Sets are disjoint, diameter = 4

Vi

\\

(R G N R e i c J
O
—
W \)/CJ -
§
oo -0 00— -2 0O

Lower bound for computing the diameter

 Diameter = 4 = sets are disjoint

» Diameter = 5 = are not disjoint

£

SERS
%

O

%

O

a7 W
¥

Lower bound for computing the diameter

 Diameter = 4 = sets are disjoint

» Diameter = 5 = are not disjoint

Lower bound for computing the diameter

 Diameter = 4 = sets are disjoint

» Diameter = 5 = are not disjoint

n = ©(vk)

Lower bound for computing the diameter

 Diameter = 4 = sets are disjoint

» Diameter = 5 = are not disjoint

A5
[N (/)

W, N/
MY/ 4

N ~

©(n) ©(n)

Lower bound for computing the diameter

Suppose we have an algorithm A for computing the diameter in time T(A, n)

A5
[N (/)

W, N/
MY/ 4

N U

©(n) ©(n)

Lower bound for computing the diameter

 Simulate A = solve set disjointness

Lower bound for computing the diameter

 Simulate A = solve set disjointness

» 1 round of simulation of A: exchange ©(n log n) bits

-
D5 A
W) /)

o /D
Y Vi

N ~

©(n) ©(n)

Lower bound for computing the diameter

 Simulate A = solve set disjointness

» 1 round of simulation of A: exchange ©(n log n) bits
» Total: T(A, n) X ©(n log n)

=
A5 @
) /)

Lower bound for computing the diameter

 Simulate A = solve set disjointness

» 1 round of simulation of A: exchange ©(n log n) bits
» Total: T(A, n) x ©(n log n) € Q (n2?)

=
A5 @
) i

Lower bound for computing the diameter

 Simulate A = solve set disjointness

» 1 round of simulation of A: exchange ©(n log n) bits
* Total: T(A,n) x ©(nlogn) e Q (n2) = T(A,n) < Q (n/ log n)

=
DS A
) i

o /D
Y Vi

N N

©(n) ©(n)

Summary

« LOCAL model: unlimited bandwidth

» CONGEST model: O(log n) bandwidth
» O(n) or O(diam(G)) time is no longer trivial
» Example:

~ APSP in time O(n), pipelining helps

~ APSP requires Q(n / log n) rounds

