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CONGEST model

» LOCAL model: arbitrarily large messages

» CONGEST model: O(log n)-bit messages



CONGEST model

+ Any of these can be encoded in O(log n)-bit messages:

» node identifier
> number of nodes
» number of edges

» distance between two nodes ...



CONGEST model

» Many algorithms that we have seen use small messages
> can be used directly in CONGEST:
- Example: coloring algorithms seen in the lectures

* There are some exceptions



Solving everything in LOCAL

» Gather the whole graph + solve the problem locally (e.g., by brute force)
> O(diam(G)) rounds

» See animation here:
https://jukkasuomela.fi/animations/local-horizon.gif



https://jukkasuomela.fi/animations/local-horizon.gif

Algorithm Gather

 May need Q(n?)-bit messages

» Nodes have IDs from 1ton
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Algorithm Gather

 May need Q(n?)-bit messages

> Round 1
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Algorithm Gather

 May need Q(n?)-bit messages

> Round 3




Algorithm Gather

 May need Q(n?)-bit messages

» Round 3, send the adjacency matrix

Q(n?) bits



Algorithm Gather

 May need Q(n?)-bit messages

» Cannot directly be used in CONGEST

» Exercise: gather all the graph in CONGEST in O(|E|) rounds



CONGEST model

» O(n) time trivial in the LOCAL model

> brute force approach: Gather + solve locally

* O(n) time non-trivial in the CONGEST model



Today

» How to find all-pairs shortest paths (APSP) in O(n) time in the CONGEST
model [Holzer, Wattenhofer]

» Lower bound of Q(n / log n) rounds for APSP
[Frischknecht, Holzer, Wattenhofer]

(Complexity of APSP in CONGEST: ©(n / log n))



Single-source shortest paths

Input:
:> ®
3




Single-source shortest paths

Distances from s
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BEFS tree
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BEFS tree

* Distances from s + shortest paths

0

Output: ()



All-pairs shortest paths

Input: 1




All-pairs shortest paths




Algorithm Wave

» Solves single-source shortest paths (SSSP) in time O(diam(G))
 Leader/source sends a message “wave”, switches to state 0, stops

« Wave received in round t for the first time:
send “wave’, switch to state t, stop

» In time O(diam(G)) all nodes receive the wave



Algorithm Wave




Algorithm BFS

- Wave + handshakes
* Tree construction:
> “proposal” + “accept”
> everyone knows their parent & children

+ Acknowledgements back from leaf nodes



Algorithm BFS
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Algorithm Leader

» Each node creates a separate BFS process

> each node v pretends to be the root

>~ messages of the BFS started by v contain ID(v)

» When two BFS processes “collide”, the one with the smaller root “wins”

> each node only needs to send messages related to one BFS process

 One tree wins everyone else — leader



Recap until now

« SSSP: Wave algorithm
» BFS tree: Wave algorithm + acceptance/rejections

» Leader election: Many BFS in parallel

» All these problems can be solved in O(diam(G)) rounds in the CONGEST
model



Algorithm APSP

» Basic idea: run Wave from each node

 Challenge: congestion



Algorithm APSP

» Basic idea: run Wave from each node

 Challenge: congestion

> all waves parallel > too many bits per edge

<50 O(n log n) bits
8
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Algorithm APSP

» Basic idea: run Wave from each node

» Challenge: congestion

> all waves parallel > too many bits per edge

> all waves sequentially > takes too long
» Solution: pipelining

> all waves in parallel in such a way that each node propagates at most one
wave per round



Algorithm APSP




Algorithm APSP

 Elect leader




Algorithm APSP

 Elect leader, construct BFS tree
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Algorithm APSP

 Move token along BFS tree slowly (every 2 rounds)
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Algorithm APSP

 Move token along BFS tree slowly (every 2 rounds)
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Algorithm APSP - Animation

» See animation here: https://jukkasuomela.fi/apsp/



https://jukkasuomela.fi/apsp/

Algorithm APSP: no collisions

Claim: at each round, a node has to propagate only one wave
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Algorithm APSP: no collisions

Claim: at each round, a node has to propagate only one wave
» Suppose, for a contradiction that this is not the case
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Algorithm APSP: no collisions

Claim: at each round, a node has to propagate only one wave

» Suppose, for a contradiction that this is not the case

» d(u, wi) =x,d(u, w2) =y <
° X ¢ y
» w.l.o.g. x>y
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Algorithm APSP: no collisions

Claim: at each round, a node has to propagate only one wave

» Suppose, for a contradiction that this is not the case

» d(u, wi) =x,d(u, w2) =y <
* XZY

* w.l.o.g. x>y
» d(wr, w2) < (x-y) /2 e

e x<sy+(x-y)/2




Algorithm APSP: no collisions B by d |
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Algorithm APSP: no collisions

Claim: at each round, a node has to propagate only one wave

» Suppose, for a contradiction that this is not the case

+ d(u,wr) =x,d(u, w2) =y <
c XZY

* w.l.o.g. x>y
» d(wr, w2) < (x-y)/ 2 e
e x<sy+(x-y)/2

* x =y contradiction!




Algorithm APSP: runtime

» Leader + BFS: O(diam(G)) rounds

* |[E|Ina BFStree:n-1

» Token traverses 2 times each edge of the BFS tree

« Total number of rounds:

> 2(2(n - 1)) + O(diam(G)) € O(n) rounds



Pipelining

* n operations, each operation takes time t

» Parallel: t rounds, bad congestion

 Sequential: nt rounds, no congestion

» Pipelining: n + t rounds, no congestion



Lower bound for APSP

APSP requires Q(n / log n) rounds
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Lower bound for APSP

Lower bound of Q(n / log n) for computing the diameter

o

Lower bound of Q(n / log n) for APSP

1. Show that a lower bound for computing the diameter implies the same
lower bound for APSP

2. Focus only on the lower bound for computing the diameter



From APSP to Diameter

» Given a solution for APSP, we can compute the diameter in O(diam(G))
rounds
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rounds

> Each node stores the maximum length of all its shortest paths in G
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> Non-leaves compute the maximum distance among their own and the ones of
its children, send to parent



From APSP to Diameter

» Given a solution for APSP, we can compute the diameter in O(diam(G))
rounds

> Each node stores the maximum length of all its shortest paths in G
> Construct a BFS tree in O(diam(G))
> Leaves send their maximum distance to parent

> Non-leaves compute the maximum distance among their own and the ones of
its children, send to parent

» Broadcast the value of the diameter



Diameter lower bound = APSP lower bound

» Compute diameter in: T(APSP) + O(diam(G)) rounds

» |f computing the diameter requires Q(n / log n) rounds

v

+ APSP must require Q(n / log n) rounds
in all graphs with diameter o(n / log n)

>~ T(APSP) + o(n / logn) € Q(n / log n) = T(APSP) € Q(n / log n)



Diameter lower bound = APSP lower bound

» Compute diameter in: T(APSP) + O(diam(G)) rounds

» |f computing the diameter requires Q(n / log n) rounds

v

+ APSP must require Q(n / log n) rounds
in all graphs with diameter o(n / log n) =

>~ T(APSP) + o(n / logn) € Q(n / log n) = T(APSP) € Q(n / log n)



Computing the diameter

»+ Computing the diameter requires Q(n/log n) [Frischknecht, Holzer, Wattenhofer]

* The proof uses known results from 2-party communication complexity

> Studies the minimum amount of communication (number of bits) needed in
order to compute functions whose arguments are distributed among several
parties

> Set disjointness between 2 communication parties



Set disjointness
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Set disjointness

« 4 8c{1,2, ..,k




Set disjointness
« 4 8c{1,2, ..,k

- Output: 1if #n &=0; 0 otherwise




Set disjointness

« 4 B8c{1,2,..,k}

- Output: 1if #n &=0; 0 otherwise

» String of k bits: 1 in position i if the i-th element is present, 0 otherwise




Set disjointness

Alice and Bob need to exchange Q(k) bits in order to solve set disjointness
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Computing the diameter: Lower bound 1dea




Computing the diameter: Lower bound 1dea

Algorithm that computes the diameter — Solution to the set disjointness
problem

O

¥ N /B

k O(vk) O(vk) k



Computing the diameter: Lower bound 1dea

Diameter = 4 = the sets are disjoint

Diameter = 5 = the sets are not disjoint
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Computing the diameter: Lower bound 1dea

Diameter in o(n / log n) rounds = Diameter exchanging o(k) bits =

Set disjointness exchanging o(k) bits = Contradict the lower bound
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Lower bound for computing the diameter
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Lower bound for computing the diameter
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Lower bound for computing the diameter
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Lower bound for computing the diameter
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Lower bound for computing the diameter
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Lower bound for computing the diameter
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Lower bound for computing the diameter
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Lower bound for computing the diameter

Diameter = 4 if the sets are disjoint, otherwise diameter 2 5
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Lower bound for computing the diameter

Sets are not disjoint, diameter = 5
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Sets are not disjoint, diameter = 5
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Lower bound for computing the diameter

Sets are not disjoint, diameter = 5
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Lower bound for computing the diameter

Sets are not disjoint, diameter = 5
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Lower bound for computing the diameter

Sets are not disjoint, diameter = 5
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Lower bound for computing the diameter

Sets are not disjoint, diameter = 5
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Lower bound for computing the diameter

Sets are not disjoint, diameter = 5
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Lower bound for computing the diameter

Sets are not disjoint, diameter = 5
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Lower bound for computing the diameter

Sets are not disjoint, diameter = 5
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Lower bound for computing the diameter

Sets are disjoint, diameter = 4

ik

e

AN =
RV N7
Ty

O—1O @/ /// O
o /i
O % ?g/ O
- V .

N \__/

. o
N

Vi

TN
O—=0 =000 -

OO —_r000—=-20




Lower bound for computing the diameter

Sets are disjoint, diameter = 4
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Lower bound for computing the diameter

Sets are disjoint, diameter = 4
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Lower bound for computing the diameter

Sets are disjoint, diameter = 4
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Lower bound for computing the diameter

Sets are disjoint, diameter = 4
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Lower bound for computing the diameter

Sets are disjoint, diameter = 4
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Lower bound for computing the diameter

Sets are disjoint, diameter = 4
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Lower bound for computing the diameter

Sets are disjoint, diameter = 4
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Sets are disjoint, diameter = 4
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Lower bound for computing the diameter

Sets are disjoint, diameter = 4

f\é“ O\\\\ ® ® ////O
/)

S

\\

/B
L A

OO —_r000—=-20

OO0 - - 000 =
O
—
/
%ﬁ/




Lower bound for computing the diameter

Sets are disjoint, diameter = 4
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Lower bound for computing the diameter

 Diameter = 4 = sets are disjoint

» Diameter = 5 = are not disjoint
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Lower bound for computing the diameter

 Diameter = 4 = sets are disjoint

» Diameter = 5 = are not disjoint




Lower bound for computing the diameter

 Diameter = 4 = sets are disjoint

» Diameter = 5 = are not disjoint
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Lower bound for computing the diameter

 Diameter = 4 = sets are disjoint

» Diameter = 5 = are not disjoint

A5
[N (/)

W, N/
MY/ 4

N ~

©(n) ©(n)



Lower bound for computing the diameter

Suppose we have an algorithm A for computing the diameter in time T(A, n)
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Lower bound for computing the diameter

 Simulate A = solve set disjointness




Lower bound for computing the diameter

 Simulate A = solve set disjointness

» 1 round of simulation of A: exchange ©(n log n) bits
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Lower bound for computing the diameter

 Simulate A = solve set disjointness

» 1 round of simulation of A: exchange ©(n log n) bits
» Total: T(A, n) X ©(n log n)
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Lower bound for computing the diameter

 Simulate A = solve set disjointness

» 1 round of simulation of A: exchange ©(n log n) bits
» Total: T(A, n) x ©(n log n) € Q (n2?)
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Lower bound for computing the diameter

 Simulate A = solve set disjointness

» 1 round of simulation of A: exchange ©(n log n) bits
* Total: T(A,n) x ©(nlogn) e Q (n2) = T(A,n) < Q (n/ log n)
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Summary

« LOCAL model: unlimited bandwidth

» CONGEST model: O(log n) bandwidth
» O(n) or O(diam(G)) time is no longer trivial
» Example:

~ APSP in time O(n), pipelining helps

~ APSP requires Q(n / log n) rounds



