CONGEST model bandwidth limitations

Alkida Balliu
University of Freiburg

LOCAL model: arbitrarily large messages

CONGEST model: O(log n)-bit messages

- Any of these can be encoded in O(log n)-bit messages:
 - node identifier
 - number of nodes
 - number of edges
 - distance between two nodes ...

Many algorithms that we have seen use small messages

can be used directly in CONGEST:

- Example: coloring algorithms seen in the lectures

There are some exceptions

Solving everything in LOCAL

Gather the whole graph + solve the problem locally (e.g., by brute force)

O(diam(G)) rounds

See animation here:

https://jukkasuomela.fi/animations/local-horizon.gif

- May need $\Omega(n^2)$ -bit messages
 - Nodes have IDs from 1 to n

- May need $\Omega(n^2)$ -bit messages
 - Nodes have IDs from 1 to n

- May need $\Omega(n^2)$ -bit messages
 - Round 1

- May need $\Omega(n^2)$ -bit messages
 - Round 2

- May need $\Omega(n^2)$ -bit messages
 - Round 3

- May need $\Omega(n^2)$ -bit messages
 - Round 3, send the adjacency matrix

• May need $\Omega(n^2)$ -bit messages

Cannot directly be used in CONGEST

• Exercise: gather all the graph in CONGEST in O(|E|) rounds

O(n) time trivial in the LOCAL model

brute force approach: Gather + solve locally

• O(n) time non-trivial in the CONGEST model

Today

 How to find all-pairs shortest paths (APSP) in O(n) time in the CONGEST model [Holzer, Wattenhofer]

• Lower bound of $\Omega(n / \log n)$ rounds for APSP [Frischknecht, Holzer, Wattenhofer]

(Complexity of APSP in CONGEST: $\Theta(n / \log n)$)

Single-source shortest paths

Single-source shortest paths

Distances from s

BFS tree

Input: (5) (8)

BFS tree

• Distances from s + shortest paths

All-pairs shortest paths

All-pairs shortest paths

Algorithm Wave

Solves single-source shortest paths (SSSP) in time O(diam(G))

· Leader/source sends a message "wave", switches to state 0, stops

 Wave received in round t for the first time: send "wave", switch to state t, stop

In time O(diam(G)) all nodes receive the wave

Algorithm Wave

Wave + handshakes

Tree construction:

"proposal" + "accept"

everyone knows their parent & children

Acknowledgements back from leaf nodes

Algorithm Leader

- Each node creates a separate BFS process
 - each node v pretends to be the root
 - messages of the BFS started by v contain ID(v)
- When two BFS processes "collide", the one with the smaller root "wins"
 - each node only needs to send messages related to one BFS process
- One tree wins everyone else → leader

Recap until now

SSSP: Wave algorithm

• BFS tree: Wave algorithm + acceptance/rejections

Leader election: Many BFS in parallel

 All these problems can be solved in O(diam(G)) rounds in the CONGEST model

- Basic idea: run Wave from each node
- Challenge: congestion

- Basic idea: run Wave from each node
- Challenge: congestion
 - all waves parallel → too many bits per edge

- Basic idea: run Wave from each node
- Challenge: congestion
 - all waves parallel → too many bits per edge
 - all waves sequentially → takes too long

- Basic idea: run Wave from each node
- Challenge: congestion
 - ▶ all waves parallel → too many bits per edge
 - all waves sequentially → takes too long
- Solution: pipelining
 - all waves in parallel in such a way that each node propagates at most one wave per round

Elect leader

Elect leader, construct BFS tree

Algorithm APSP - Animation

See animation here: https://jukkasuomela.fi/apsp/

Claim: at each round, a node has to propagate only one wave

Suppose, for a contradiction that this is not the case

- Suppose, for a contradiction that this is not the case
- $d(u, w_1) = x, d(u, w_2) = y$

- Suppose, for a contradiction that this is not the case
- $d(u, w_1) = x, d(u, w_2) = y$
- x ≠ y

- Suppose, for a contradiction that this is not the case
- $d(u, w_1) = x, d(u, w_2) = y$
- x ≠ y
- w.l.o.g. x > y

- Suppose, for a contradiction that this is not the case
- $d(u, w_1) = x, d(u, w_2) = y$
- x ≠ y
- w.l.o.g. x > y
- $d(w_1, w_2) \le (x y) / 2$

- Suppose, for a contradiction that this is not the case
- $d(u, w_1) = x, d(u, w_2) = y$
- x ≠ y
- w.l.o.g. x > y
- $d(w_1, w_2) \le (x y) / 2$
- $x \le y + (x y) / 2$

t,! Starting time of wave

Claim: at each round, a node has to propagate only one wave t_2 : wave t_2 : wave

• Suppose, for a contradiction that this is not the case

$$t_2 = t_1 + x - y$$

•
$$d(u, w_1) = x$$
, $d(u, w_2) = y$ token at w_2 exactly $x-y$

•
$$d(w_1, w_2) \le (x - y) / 2$$

$$x \le y + (x - y) / 2 \qquad \underbrace{d(u, w_1)}_{= \times} \le \underbrace{d(u, w_2)}_{+} + \underbrace{d(w_2)}_{+}$$

- Suppose, for a contradiction that this is not the case
- $d(u, w_1) = x, d(u, w_2) = y$
- x ≠ y
- w.l.o.g. x > y
- $d(w_1, w_2) \le (x y) / 2$
- $\bullet \ \ x \le y + (x y) / 2$
- x ≤ y contradiction!

Algorithm APSP: runtime

Leader + BFS: O(diam(G)) rounds

• |*E*| in a BFS tree: *n* - 1

Token traverses 2 times each edge of the BFS tree

Total number of rounds:

► $2(2(n-1)) + O(diam(G)) \in O(n)$ rounds

Pipelining

• n operations, each operation takes time t

• Parallel: t rounds, bad congestion

Sequential: nt rounds, no congestion

• Pipelining: *n* + *t* rounds, no congestion

Lower bound for APSP

APSP requires $\Omega(n / \log n)$ rounds

Lower bound for APSP

Lower bound of $\Omega(n / \log n)$ for computing the diameter

Lower bound of $\Omega(n / \log n)$ for APSP

Lower bound for APSP

Lower bound of $\Omega(n / \log n)$ for computing the diameter

Lower bound of $\Omega(n / \log n)$ for APSP

- 1. Show that a lower bound for computing the diameter implies the same lower bound for APSP
- 2. Focus only on the lower bound for computing the diameter

Given a solution for APSP, we can compute the diameter in O(diam(G))
rounds

- Given a solution for APSP, we can compute the diameter in O(diam(G))
 rounds
 - Each node stores the maximum length of all its shortest paths in G

- Given a solution for APSP, we can compute the diameter in O(diam(G))
 rounds
 - Each node stores the maximum length of all its shortest paths in G
 - Construct a BFS tree in O(diam(G))

- Given a solution for APSP, we can compute the diameter in O(diam(G))
 rounds
 - Each node stores the maximum length of all its shortest paths in G
 - Construct a BFS tree in O(diam(G))
 - Leaves send their maximum distance to parent

- Given a solution for APSP, we can compute the diameter in O(diam(G))
 rounds
 - Each node stores the maximum length of all its shortest paths in G
 - Construct a BFS tree in O(diam(G))
 - Leaves send their maximum distance to parent
 - Non-leaves compute the maximum distance among their own and the ones of its children, send to parent

- Given a solution for APSP, we can compute the diameter in O(diam(G))
 rounds
 - Each node stores the maximum length of all its shortest paths in G
 - Construct a BFS tree in O(diam(G))
 - Leaves send their maximum distance to parent
 - Non-leaves compute the maximum distance among their own and the ones of its children, send to parent
 - Broadcast the value of the diameter

Diameter lower bound ⇒APSP lower bound

- Compute diameter in: T(APSP) + O(diam(G)) rounds
- If computing the diameter requires $\Omega(n / \log n)$ rounds

$$\hat{\mathbf{U}}$$

• APSP must require $\Omega(n / \log n)$ rounds in all graphs with diameter $o(n / \log n)$

► T(APSP) + $o(n / \log n) \in \Omega(n / \log n) \Rightarrow$ T(APSP) ∈ $\Omega(n / \log n)$

Diameter lower bound ⇒APSP lower bound

- Compute diameter in: T(APSP) + O(diam(G)) rounds
- If computing the diameter requires $\Omega(n / \log n)$ rounds

$$\hat{\Gamma}$$

• APSP must require $\Omega(n / \log n)$ rounds in all graphs with diameter $o(n / \log n)$

► T(APSP) + $o(n / \log n) \in \Omega(n / \log n) \Rightarrow$ T(APSP) ∈ $\Omega(n / \log n)$

Computing the diameter

• Computing the diameter requires $\Omega(n/\log n)$ [Frischknecht, Holzer, Wattenhofer]

- The proof uses known results from 2-party communication complexity
 - Studies the minimum amount of communication (number of bits) needed in order to compute functions whose arguments are distributed among several parties
 - Set disjointness between 2 communication parties

Set disjointness

Set disjointness

Set disjointness

• $\mathcal{A}, \mathcal{B} \subseteq \{1, 2, \dots, k\}$

• $\mathcal{A}, \mathcal{B} \subseteq \{1, 2, ..., k\}$

• Output: 1 if $\mathcal{A} \cap \mathcal{B} = \emptyset$; 0 otherwise

- $\mathcal{A}, \mathcal{B} \subseteq \{1, 2, ..., k\}$
- Output: 1 if $\mathcal{A} \cap \mathcal{B} = \emptyset$; 0 otherwise
- String of k bits: 1 in position i if the i-th element is present, 0 otherwise

Alice and Bob need to exchange $\Omega(k)$ bits in order to solve set disjointness

true for randomited algorithms even if Alice & Bob have shared randomness

Algorithm that computes the diameter \Longrightarrow Solution to the set disjointness problem

Diameter = $4 \Rightarrow$ the sets are disjoint

Diameter $\geq 5 \Rightarrow$ the sets are **not** disjoint

Diameter in $o(n / \log n)$ rounds \Rightarrow Diameter exchanging o(k) bits \Rightarrow Set disjointness exchanging o(k) bits \Rightarrow Contradict the lower bound

Diameter = 4 if the sets are disjoint, otherwise diameter ≥ 5

- Diameter = 4 ⇒ sets are disjoint
- Diameter ≥ 5 ⇒ are not disjoint

- Diameter = 4 ⇒ sets are disjoint
- Diameter ≥ 5 ⇒ are not disjoint

- Diameter = 4 ⇒ sets are disjoint
- Diameter ≥ 5 ⇒ are not disjoint

- Diameter = 4 ⇒ sets are disjoint
- Diameter ≥ 5 ⇒ are not disjoint

Suppose we have an algorithm A for computing the diameter in time T(A, n)

Simulate A ⇒ solve set disjointness

- Simulate A ⇒ solve set disjointness
- 1 round of simulation of A: exchange $\Theta(n \log n)$ bits

- Simulate $A \Rightarrow$ solve set disjointness
- 1 round of simulation of A: exchange $\Theta(n \log n)$ bits
- Total: $T(A, n) \times \Theta(n \log n)$

- Simulate $A \Rightarrow$ solve set disjointness
- 1 round of simulation of A: exchange $\Theta(n \log n)$ bits
- Total: $T(A, n) \times \Theta(n \log n) \in \Omega(n^2)$

- Simulate A ⇒ solve set disjointness
- 1 round of simulation of A: exchange $\Theta(n \log n)$ bits
- Total: $T(A, n) \times \Theta(n \log n) \in \Omega(n^2) \Rightarrow T(A, n) \in \Omega(n / \log n)$

Summary

- LOCAL model: unlimited bandwidth
- CONGEST model: O(log n) bandwidth
- O(n) or O(diam(G)) time is no longer trivial
- Example:
 - APSP in time O(n), pipelining helps
 - APSP requires $\Omega(n / \log n)$ rounds