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Massively Parallel Computations
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Challenges

* Moore’s law does not hold for ever

 We can only increase computational power by increasing the parallelism
* We need algorithmic techniques to deal with immense amounts of data

Massively Parallel Graph Computations
 Many important applications require solving standard graph problems in very
large graphs (e.g., search engines, shortest path computations, etc.)
* We need ways to perform graph computations in highly parallel settings:
— Graph data is shared among many servers / machines
— Each machine can only store a small part of the graph
— Need techniques to split and parallelize computations among machines

— Use communication to coordinate between the machines

* Related to (standard) distributed graph computations
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Massively Parallel Computation (MPC) Model :
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MPC Model

* An abstract formal model to study large-scale parallel computations

— Aims to study parallelism at a more coarse-grained level than classic fine-grained

parallel models like PRAM
(models settings where communication is much more expensive than computation)
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Formal Model “""ig/ ’(ﬁ \D'L VD
* Input of size N words (1 word = O(log N) bits, for graphs, N = O(|E|))

. _¥

e Thereare M < N machines =M -‘»‘71'6 (N)
* Each machine has a memory of S words, i.e., we need S > N/M
I —

— We typically assume that S = N°€ for a constantc < 1

My M plyh)
* Time progresses in synchronous rounds, in each round, S /
every machine can send & receive S words to & from other machines

* |Initially, the data is partitioned in an a?bitrary way among the M machines
— Such that every machine has a roughly equal part of the data

— W.l.o.g., data is partitioned in a random way among the machines
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MPC Model

* An abstract formal model to study large-scale parallel computations
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MPC Model for Graph Computations
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S=wm

Assumption: Input is a graph G = (V,E) =w

* Number of nodes n = |V|, number of edges m = |E|, nodes have IDs
—_—

* Input can be specified by the set E of edges
— each edge might have some other information, e.g., a weight

— for simplicity, assume that every node has degree > 1

* Initially, each edge is given to a uniformly random machine VC«J
. ~ ~6/—_\ P wrlau}
*  We typically assume that S = O(N/M) = O(m/M) o ((o fml“"["s
= - ! pn

Strongly superlinear memory regime

S =nl*€ foraconstante > 0

P —

Strongly sublinear memory regime

S=1L“foraconstant0<a< 1

Near-linear memory regime

S =n-polylogn
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Minimum Spanning Tree (MST) Problem
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Given: connected graph G = (V, E) with edge weights w,

Goal: find a spanning tree T = (V, E7) of minimum total weight
— For simplicity, assume that the edge weights w, are unique (makes MST unique)
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Minimum Spanning Forest (MSF) of G: QeE AL =¢'
* A forest consisting of the MST of each of the connected components of G
— Maximal forest of minimum total weight

Claim: Let ¢ = (V, E,w) be a weighted graph and let H = (VV',E',w) be a
subgraph of G. It e € E' is an edge of the MST (or MSF) of G, then e is also an
edge of the minimum spanning fores’g (MSF) of H
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MST With Strongly Superlinear Memory
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Initially:

Each machine has 0 (n'*¢) edges
— Thereare M = 0(m/n'*€) machines

Let Hy, be the subgraph induced by the edges of machine M

—

MPC Algorithm:
1. Each machine M computes minimum spanning forest Fy, of Hy,
2. Discard all edges that are not part of some MSF Fy, - T
3. Remaining number of edges:<— M 01—

m' < M -n = 0(m/n)
4. Redistribute remaining edges to _Ai’ = 0(m'/n'*%) machines

*  Randomly reassign each edge WM EW
W W W -4
1)) nZE \,\3‘ V\'l -t¢

* Algorithm reduces number of edges by factor ©(n¢) in 1 round.

0(1/¢) repetitions suffice to solve the problem
——
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Boruvka’s MST Algorithm :
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MST Fragment:
* A connected subtree F = (I, Er) of the MST

Minimum edge of MST fragment F = (V, Ef):
* Minimum weight edge connecting a node in I/ with a node in V(X/I/F

Lemma: For every MST fragment F, the minimum edge of F is in the MST
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Boruvka’s MST Algorithm
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Algorithm description:
* Develops the MST in parallel phases
* [|nitially, each node is an MST fragment of size 1 (and with no edges)

* In each phase: add the minimum edge of each fragment to the MST

* Terminate when there is only one fragment

— or when there are no edges between different fragments

Theorem: The above alg. computes the MST in O (logn) phases.
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MST With Strongly Sublinear Memory: Ideas
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Assume: G = (V, E) with n nodes, m edges, memory S = n% for const. a« > 0
* Also assume that we have M = m/S - ¢ logn machines for suff. largec > 1

Representation of algorithm state:
 Each fragment has a unique ID, fragment ID of node u: FID(u)

* The machine storing an edge {u, v} knows the fragment IDs of u and v

8

Goal: implement one phase in time O(1):

* Assume that for each fragment ID x, there is some responsible machine M,
— Additional empty machines that are randomly assigned (e.g. by a hash function)

* For now, assume that each node u directly interacts with machine Mgpy,
M, | D\ 1 Ko
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Implementing One Phase (First Attempt)
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Small Change to the Basic Algorithm
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* |n each phase, each fragment initially picks a random color in {red, blue}
* Let {u, v} be the minimum edge of a fragment F

* Only add {u, v} to MST in current phase if F is a red fragment and {u, v}
connects to a blue fragment.
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Implementation with Aggregation Trees
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MST with Strongly Sublinear Memory
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Theorem: In the strongly sublinear memory regime (i.e., when S = n“ for a
constant a € (0,1)), an MST can be computed in time O(logn).
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