

Chapter 11 Chapter 11

Part I

Theory of Distributed Systems

Fabian Kuhn

Challenges

- Moore's law does not hold for ever
- We can only increase computational power by increasing the parallelism
- We need algorithmic techniques to deal with immense amounts of data

Massively Parallel Graph Computations

- Many important applications require solving standard graph problems in very large graphs (e.g., search engines, shortest path computations, etc.)
- We need ways to perform graph computations in highly parallel settings:
 - Graph data is shared among many servers / machines
 - Each machine can only store a small part of the graph
 - Need techniques to split and parallelize computations among machines
 - Use communication to coordinate between the machines
- Related to (standard) distributed graph computations

Massively Parallel Computation (MPC) Model

MPC Model

- An abstract formal model to study large-scale parallel computations
 - Aims to study parallelism at a more coarse-grained level than classic fine-grained _ parallel models like PRAM

(models settings where communication is much more expensive than computation)

Formal Model

- Input of size N words (1 word = $O(\log N)$ bits, for graphs, N = O(|E|)) $S = \frac{N}{M} \cdot polylog(N)$
- There are $M \ll N$ machines
- Each machine has a memory of S words, i.e., we need $S \ge N/M$ ۲
 - We typically assume that $S = N^c$ for a constant c < 1
- $M \ge \frac{N}{S} \cdot pilylog(W)$ Time progresses in synchronous rounds, in each round, every machine can send & receive S words to & from other machines
- Initially, the data is partitioned in an arbitrary way among the M machines

Fabian Kuhn

- Such that every machine has a roughly equal part of the data
- W.I.o.g., data is partitioned in a random way among the machines

in port

Massively Parallel Computation (MPC) Model

4

MPC Model

- An abstract formal model to study large-scale parallel computations
 - Aims to study parallelism at a more coarse-grained level than classic fine-grained parallel models like PRAM

(models settings where communication is much more expensive than computation)

MPC Model for Graph Computations

Assumption: Input is a graph G = (V, E)

Number of nodes n = |V|, number of edges m = |E|, nodes have IDs

 $S = m^2$

- Input can be specified by the set E of edges
 - each edge might have some other information, e.g., a weight
 - for simplicity, assume that every node has degree ≥ 1
- Initially, each edge is given to a uniformly random machine ~ means that up do (log n)" factors
- We typically assume that $S = \tilde{O}(N/M) = \tilde{O}(m/M)$

Strongly superlinear memory regime

$$S = n^{1+arepsilon}$$
 for a constant $arepsilon > 0$

Strongly sublinear memory regime

$$S = \underline{n}^{\alpha}$$
 for a constant $0 < \alpha < 1$

Near-linear memory regime

 $S = n \cdot \operatorname{poly} \log n$

Minimum Spanning Tree (MST) Problem

Given: connected graph G = (V, E) with edge weights w_e

Goal: find a spanning tree $T = (V, E_T)$ of minimum total weight

- For simplicity, assume that the edge weights w_e are unique (makes MST unique)

Theory of Distributed Systems

 $\forall' \subseteq V, \in \subseteq E$

Minimum Spanning Forest (MSF) of G:

- A forest consisting of the MST of each of the connected components of G
 - Maximal forest of minimum total weight

Claim: Let G = (V, E, w) be a weighted graph and let H = (V', E', w) be a subgraph of G. If $e \in E'$ is an edge of the MST (or MSF) of G, then e is also an edge of the minimum spanning forest (MSF) of H

MST With Strongly Superlinear Memory

UN FREBURG

Initially:

- Each machine has $O(n^{1+\varepsilon})$ edges
 - There are $M = O(m/n^{1+\varepsilon})$ machines
- Let H_M be the subgraph induced by the edges of machine M

MPC Algorithm:

- 1. Each machine M computes minimum spanning forest F_M of H_M
- 2. Discard all edges that are not part of some MSF F_M
- 3. Remaining number of edges: $M \cdot (n 1)$ $m' \le M \cdot n = O(m/n^{\varepsilon})$
- 4. Redistribute remaining edges to $\underline{M'} = O(\underline{m'/n^{1+\varepsilon}})$ machines
 - Randomly reassign each edge $M \rightarrow \frac{M}{N^2} \rightarrow \frac{M}{N^{25}} \rightarrow \frac{M}{N^{35}}$ N²
- Algorithm reduces number of edges by factor $\Theta(n^{\varepsilon})$ in 1 round.
- $O(1/\varepsilon)$ repetitions suffice to solve the problem

Theory of Distributed Systems

Borůvka's MST Algorithm

MST Fragment:

• A connected subtree $F = (V_F, E_F)$ of the MST

Minimum edge of MST fragment $F = (V_F, E_F)$:

• Minimum weight edge connecting a node in V_F with a node in $V \bigotimes V_F$

Lemma: For every MST fragment F, the minimum edge of F is in the MST

9

Algorithm description:

- Develops the MST in parallel phases
- Initially, each node is an MST fragment of size 1 (and with no edges)
- In each phase: add the minimum edge of each fragment to the MST
- Terminate when there is only one fragment
 - or when there are no edges between different fragments

Theorem: The above alg. computes the MST in $O(\log n)$ phases.

MST With Strongly Sublinear Memory: Ideas

Assume: G = (V, E) with *n* nodes, *m* edges, memory $S = n^{\alpha}$ for const. $\alpha > 0$

• Also assume that we have $M \ge m/S \cdot c \log n$ machines for suff. large $c \ge 1$

Representation of algorithm state:

- Each fragment has a unique ID, fragment ID of node \underline{u} : FID(u)
- The machine storing an edge $\{u, v\}$ knows the fragment IDs of u and v

Goal: implement one phase in time O(1):

- Assume that for each fragment ID x, there is some responsible machine M_x
 - Additional empty machines that are randomly assigned (e.g. by a hash function)
- For now, assume that each node u directly interacts with machine $M_{FID(u)}$

Small Change to the Basic Algorithm

- FREBURG
- In each phase, each fragment initially picks a random color in {red, blue}
- Let $\{u, v\}$ be the minimum edge of a fragment F
- Only add {u, v} to MST in current phase if F is a red fragment and {u, v} connects to a blue fragment.

MST with Strongly Sublinear Memory

Theorem: In the strongly sublinear memory regime (i.e., when $S = n^{\alpha}$ for a constant $\alpha \in (0,1)$), an MST can be computed in time $O(\log n)$.