
Chapter 11
Massively Parallel Computations

Part I

Theory of Distributed Systems

Fabian Kuhn

Theory of Distributed Systems Fabian Kuhn 2

Massively Parallel Computations

Challenges
• Moore’s law does not hold for ever
• We can only increase computational power by increasing the parallelism
• We need algorithmic techniques to deal with immense amounts of data

Massively Parallel Graph Computations
• Many important applications require solving standard graph problems in very

large graphs (e.g., search engines, shortest path computations, etc.)
• We need ways to perform graph computations in highly parallel settings:

– Graph data is shared among many servers / machines
– Each machine can only store a small part of the graph
– Need techniques to split and parallelize computations among machines
– Use communication to coordinate between the machines

• Related to (standard) distributed graph computations

Theory of Distributed Systems Fabian Kuhn 3

Massively Parallel Computation (MPC) Model

MPC Model
• An abstract formal model to study large-scale parallel computations

– Aims to study parallelism at a more coarse-grained level than classic fine-grained
parallel models like PRAM
(models settings where communication is much more expensive than computation)

Formal Model
• Input of size ! words (1 word = # log! bits, for graphs, ! = # ')
• There are (≪ ! machines
• Each machine has a memory of * words, i.e., we need * ≥ !/(

– We typically assume that * = !- for a constant . < 1
• Time progresses in synchronous rounds, in each round,

every machine can send & receive * words to & from other machines
• Initially, the data is partitioned in an arbitrary way among the (machines

– Such that every machine has a roughly equal part of the data
– W.l.o.g., data is partitioned in a random way among the machines

Theory of Distributed Systems Fabian Kuhn 4

Massively Parallel Computation (MPC) Model

MPC Model
• An abstract formal model to study large-scale parallel computations

– Aims to study parallelism at a more coarse-grained level than classic fine-grained
parallel models like PRAM
(models settings where communication is much more expensive than computation)

Theory of Distributed Systems Fabian Kuhn 5

MPC Model for Graph Computations

Assumption: Input is a graph ! = #, %
• Number of nodes & = ' , number of edges (=) , nodes have IDs
• Input can be specified by the set) of edges

– each edge might have some other information, e.g., a weight
– for simplicity, assume that every node has degree ≥ 1

• Initially, each edge is given to a uniformly random machine
• We typically assume that , = -. ⁄0 1 = -. (/1

Strongly superlinear memory regime
3 = 4567 for a constant 7 > 9

Strongly sublinear memory regime

3 = 4: for a constant 9 < : < 5
Near-linear memory regime

3 = 4 ⋅ =>?@ ?>A4

Theory of Distributed Systems Fabian Kuhn 6

Minimum Spanning Tree (MST) Problem

Given: connected graph ! = #, % with edge weights &'
Goal: find a spanning tree (= #, %) of minimum total weight

– For simplicity, assume that the edge weights &' are unique (makes MST unique)

3

14 4

6

1

10

13

23

21

31

825
20

1118

17
16

199
12

7 2
28

Theory of Distributed Systems Fabian Kuhn 7

Properties of the MST

Minimum Spanning Forest (MSF) of !:
• A forest consisting of the MST of each of the connected components of "

– Maximal forest of minimum total weight

Claim: Let " = $, &, ' be a weighted graph and let (= $), &), ' be a
subgraph of ". If * ∈ &′ is an edge of the MST (or MSF) of ", then * is also an
edge of the minimum spanning forest (MSF) of (

Theory of Distributed Systems Fabian Kuhn 8

MST With Strongly Superlinear Memory

Initially:
• Each machine has ! "#$% edges

– There are & = ! ⁄) "#$% machines
• Let *+ be the subgraph induced by the edges of machine &

MPC Algorithm:
1. Each machine & computes minimum spanning forest ,+ of *+
2. Discard all edges that are not part of some MSF ,+
3. Remaining number of edges:

)- ≤ & ⋅ " = ! ⁄) "%
4. Redistribute remaining edges to &- = ! ⁄)′ "#$% machines

• Randomly reassign each edge

• Algorithm reduces number of edges by factor Θ "% in 1 round.
• ! ⁄1 3 repetitions suffice to solve the problem

Theory of Distributed Systems Fabian Kuhn 9

Borůvka’s MST Algorithm

MST Fragment:
• A connected subtree ! = #$, &$ of the MST

Minimum edge of MST fragment ' = ()', *'):
• Minimum weight edge connecting a node in #$ with a node in # ∖ #$

Lemma: For every MST fragment !, the minimum edge of ! is in the MST

Theory of Distributed Systems Fabian Kuhn 10

Borůvka’s MST Algorithm

Algorithm description:
• Develops the MST in parallel phases
• Initially, each node is an MST fragment of size 1 (and with no edges)

• In each phase: add the minimum edge of each fragment to the MST

• Terminate when there is only one fragment
– or when there are no edges between different fragments

Theorem: The above alg. computes the MST in " log & phases.

Theory of Distributed Systems Fabian Kuhn 11

MST With Strongly Sublinear Memory: Ideas

Assume: ! = #, % with & nodes, ' edges, memory (= &) for const. * > 0
• Also assume that we have - ≥ ⁄' (⋅ 1 log & machines for suff. large 1 ≥ 1

Representation of algorithm state:
• Each fragment has a unique ID, fragment ID of node 6: FID(6)
• The machine storing an edge 6, < knows the fragment IDs of 6 and <

Goal: implement one phase in time = > :
• Assume that for each fragment ID ?, there is some responsible machine -@

– Additional empty machines that are randomly assigned (e.g. by a hash function)
• For now, assume that each node 6 directly interacts with machine -ABC(D)

Theory of Distributed Systems Fabian Kuhn 12

Implementing One Phase (First Attempt)

Theory of Distributed Systems Fabian Kuhn 13

Small Change to the Basic Algorithm

• In each phase, each fragment initially picks a random color in red, blue
• Let (,) be the minimum edge of a fragment *
• Only add (,) to MST in current phase if * is a red fragment and (,)

connects to a blue fragment.

Theory of Distributed Systems Fabian Kuhn 14

Implementation with Aggregation Trees

Theory of Distributed Systems Fabian Kuhn 15

MST with Strongly Sublinear Memory

Theorem: In the strongly sublinear memory regime (i.e., when ! = #$ for a
constant % ∈ 0,1), an MST can be computed in time * log # .

