

Chapter 11 Massively Parallel Computations

Part I

Theory of Distributed Systems

Fabian Kuhn

Challenges

- Moore's law does not hold for ever
- We can only increase computational power by increasing the parallelism
- We need algorithmic techniques to deal with immense amounts of data

Massively Parallel Graph Computations

- Many important applications require solving standard graph problems in very large graphs (e.g., search engines, shortest path computations, etc.)
- We need ways to perform graph computations in highly parallel settings:
	- Graph data is shared among many servers / machines
	- Each machine can only store a small part of the graph
	- Need techniques to split and parallelize computations among machines
	- Use communication to coordinate between the machines
- Related to (standard) distributed graph computations

Massively Parallel Computation (MPC) Model

MPC Model

- An abstract formal model to study large-scale parallel computations
	- Aims to study parallelism at a more coarse-grained level than classic fine-grained parallel models like PRAM

(models settings where communication is much more expensive than computation)

Formal Model

- Input of size N words (1 word = $O(\log N)$ bits, for graphs, $N = O(|E|)$) $S = \frac{N}{M} \cdot \frac{1}{M} \cdot \frac{N}{M}$
- There are $M \ll N$ machines
- Each machine has a memory of S words, i.e., we need $S \ge N/\overline{M}$
	- We typically assume that $S = N^c$ for a constant $c < 1$
- $M \geqslant \frac{N}{S} \cdot \frac{1}{S} \cdot \frac{1}{S} \cdot \frac{1}{S}$ Time progresses in synchronous rounds, in each round, every machine can send & receive S words to & from other machines
- Initially, the data is partitioned in an arbitrary way among the M machines
	- Such that every machine has a roughly equal part of the data
	- W.l.o.g., data is partitioned in a random way among the machines

inport

Massively Parallel Computation (MPC) Model

MPC Model

- An abstract formal model to study large-scale parallel computations
	- Aims to study parallelism at a more coarse-grained level than classic fine-grained parallel models like PRAM

(models settings where communication is much more expensive than computation)

MPC Model for Graph Computations

Assumption: Input is a graph $G = (V, E)$

Number of nodes $n = |V|$, number of edges $m = |E|$, nodes have IDs

 $S = m^c$

- Input can be specified by the set E of edges
	- each edge might have some other information, e.g., a weight
	- for simplicity, assume that every node has degree ≥ 1
-
- Initially, each edge is given to a uniformly random machine
We typically assume that $S = \frac{\tilde{O}(N/M)}{\tilde{O}(m/M)} = \frac{\tilde{O}(m/M)}{M}$ we are χ^{old} factors We typically assume that $S = \tilde{O}(N/M) = \tilde{O}(m/M)$

Strongly superlinear memory regime

$$
\underline{S}=n^{1+\varepsilon} \text{ for a constant } \varepsilon>0
$$

Strongly sublinear memory regime

$$
S=\underline{n}^{\alpha}
$$
 for a constant $0 < \alpha < 1$

Near-linear memory regime

 $S = n \cdot \text{poly}\log n$

Minimum Spanning Tree (MST) Problem

Given: connected graph $G = (V, E)$ with edge weights W_e

Goal: find a spanning tree $T = (V, E_T)$ of minimum total weight

– For simplicity, assume that the edge weights w_e are unique (makes MST unique)

Theory of Distributed Systems Fabian Kuhn 6

 V' s V, E' s E

Minimum Spanning Forest (MSF) of G:

- A forest consisting of the MST of each of the connected components of G
	- Maximal forest of minimum total weight

Claim: Let $G = (V, E, w)$ be a weighted graph and let $H = (V', E', w)$ be a subgraph of G. If $e \in \overline{E}'$ is an edge of the MST (or MSF) of G, then e is also an edge of the minimum spanning forest (MSF) of H

MST With Strongly Superlinear Memory

Initially:

- Each machine has $O(n^{1+\tilde{\varepsilon}})$ edges
	- There are $M = O(m/n^{1+\epsilon})$ machines
- Let H_M be the subgraph induced by the edges of machine M

MPC Algorithm:

- 1. Each machine M computes minimum spanning forest F_M of H_M
- 2. Discard all edges that are not part of some MSF F_M
- 3. Remaining number of edges: $\longleftarrow M \cdot (n-1)$ $m' \leq M \cdot n = O(m/n^{\varepsilon})$
- 4. Redistribute remaining edges to $M' = O(m'/n^{1+\varepsilon})$ machines
	- Randomly reassign each edge
 $W \rightarrow \frac{M}{N^{\epsilon}} \rightarrow \frac{M}{N^{2\epsilon}}$
- Algorithm reduces number of edges by factor $\Theta(n^{\varepsilon})$ in 1 round.
- $O(1/\varepsilon)$ repetitions suffice to solve the problem $26(1)$

Theory of Distributed Systems **Fabian Kuhn** 8 8

Borůvka's MST Algorithm

MST Fragment:

A connected subtree $F = (V_F, E_F)$ of the MST

Minimum edge of MST fragment $F = (V_F, E_F)$ **:**

Minimum weight edge connecting a node in V_F with a node in $V \mathscr{K} V_F$

Lemma: For every MST fragment F , the minimum edge of F is in the MST

Algorithm description:

- Develops the MST in parallel phases
- Initially, each node is an MST fragment of size 1 (and with no edges)
- **In each phase:** *add the minimum edge of each fragment* to the MST
- Terminate when there is only one fragment
	- or when there are no edges between different fragments

Theorem: The above alg. computes the MST in $O(\log n)$ phases.

MST With Strongly Sublinear Memory: Ideas

Assume: $G = (V, E)$ with n nodes, m edges, memory $S = n^{\alpha}$ for const. $\alpha > 0$

Also assume that we have $M \geq \frac{m}{s} \cdot \frac{c \log n}{e}$ machines for suff. large $c \geq 1$

Representation of algorithm state:

- Each fragment has a unique ID, fragment ID of node u : FID(u)
- The machine storing an edge $\{u, v\}$ knows the fragment IDs of u and v

Goal: implement one phase in time $O(1)$ **:**

- Assume that for each fragment ID x, there is some responsible machine M_{γ} .
	- Additional empty machines that are randomly assigned (e.g. by a hash function)
- For now, assume that each node u directly interacts with machine $M_{\text{FID}(u)}$

Implementing One Phase (First Attempt)

Small Change to the Basic Algorithm

-
- In each phase, each fragment initially picks a random color in $\{red, blue\}$
- Let $\{u, v\}$ be the minimum edge of a fragment F
- Only add $\{u, v\}$ to MST in current phase if F is a red fragment and $\{u, v\}$ connects to a blue fragment.

MST with Strongly Sublinear Memory

Theorem: In the strongly sublinear memory regime (i.e., when $S = n^{\alpha}$ for a constant $\alpha \in (0,1)$, an MST can be computed in time $O(\log n)$.