UNI
[

FREIBURG

"
Chapter 11

Massively Parallel Computations

Part |

Theory of Distributed Systems

Fabian Kuhn

Massively Parallel Computations

UNI
|

FREIBURG

Challenges

* Moore’s law does not hold for ever

 We can only increase computational power by increasing the parallelism
* We need algorithmic techniques to deal with immense amounts of data

Massively Parallel Graph Computations
 Many important applications require solving standard graph problems in very
large graphs (e.g., search engines, shortest path computations, etc.)
* We need ways to perform graph computations in highly parallel settings:
— Graph data is shared among many servers / machines
— Each machine can only store a small part of the graph
— Need techniques to split and parallelize computations among machines

— Use communication to coordinate between the machines

* Related to (standard) distributed graph computations

Theory of Distributed Systems Fabian Kuhn 2

Massively Parallel Computation (MPC) Model :

UNI
FREIBURG

MPC Model

* An abstract formal model to study large-scale parallel computations

— Aims to study parallelism at a more coarse-grained level than classic fine-grained

parallel models like PRAM
(models settings where communication is much more expensive than computation)

) PR | / :‘.k?v}

Formal Model “""ig/ ’(ﬁ \D'L VD
* Input of size N words (1 word = O(log N) bits, for graphs, N = O(|E|))

. _¥

e Thereare M < N machines =M -‘»‘71'6 (N)
* Each machine has a memory of S words, i.e., we need S > N/M
I —

— We typically assume that S = N°€ for a constantc < 1

My M plyh)
* Time progresses in synchronous rounds, in each round, S /
every machine can send & receive S words to & from other machines

* |Initially, the data is partitioned in an a?bitrary way among the M machines
— Such that every machine has a roughly equal part of the data

— W.l.o.g., data is partitioned in a random way among the machines

Theory of Distributed Systems Fabian Kuhn 3

Massively Parallel Computation (MPC) Model :

UNI
FREIBURG

MPC Model

* An abstract formal model to study large-scale parallel computations

— Aims to study parallelism at a more coarse-grained level than classic fine-grained

parallel models like PRAM
(models settings where communication is much more expensive than computation)

. 4 K W\uxA"MS

\c// AQ —Mur— ‘h’(‘owo(g

N | .

1
' l

EEAER

’\D‘\‘&\ (MW , (SQMd/F‘CV-) (:u Mc,q,'].,g \5 < S

Theory of Distributed Systems Fabian Kuhn 4

-’\

MPC Model for Graph Computations

UNI
FREIBURG

S=wm

Assumption: Input is a graph G = (V,E) =w

* Number of nodes n = |V|, number of edges m = |E|, nodes have IDs
—_—

* Input can be specified by the set E of edges
— each edge might have some other information, e.g., a weight

— for simplicity, assume that every node has degree > 1

* Initially, each edge is given to a uniformly random machine VC«J
. ~ ~6/—_\ P wrlau}
* We typically assume that S = O(N/M) = O(m/M) o ((o fml“"["s
= - ! pn

Strongly superlinear memory regime

S =nl*€ foraconstante > 0

P —

Strongly sublinear memory regime

S=1L“foraconstant0<a< 1

Near-linear memory regime

S =n-polylogn

Theory of Distributed Systems Fabian Kuhn 5

Minimum Spanning Tree (MST) Problem

UNI
FREIBURG

Given: connected graph G = (V, E) with edge weights w,

Goal: find a spanning tree T = (V, E7) of minimum total weight
— For simplicity, assume that the edge weights w, are unique (makes MST unique)

1
13
3 6 o
10
23
14 4
’ ' ®
28
16 31
12
20

Theory of Distributed Systems Fabian Kuhn 6

UNI

Properties of the MST VeV g'<c

FREIBURG

I
Minimum Spanning Forest (MSF) of G: QeE AL =¢'
* A forest consisting of the MST of each of the connected components of G
— Maximal forest of minimum total weight

Claim: Let ¢ = (V, E,w) be a weighted graph and let H = (VV',E',w) be a
subgraph of G. It e € E' is an edge of the MST (or MSF) of G, then e is also an
edge of the minimum spanning fores’g (MSF) of H

st o4 6 shggh | o G

—

Coul. <O wmp,

wby ((Jr(()

e

RSHM ¢ p‘: @w-lraohcA'QU"-\ "'C-k‘
L N et ‘?"\‘ ’4» - °1,‘H

Theory of Distributed Systems Fabian Kuhn

MST With Strongly Superlinear Memory

UNI

FREIBURG

Initially:

Each machine has 0 (n'*¢) edges
— Thereare M = 0(m/n'*€) machines

Let Hy, be the subgraph induced by the edges of machine M

—

MPC Algorithm:
1. Each machine M computes minimum spanning forest Fy, of Hy,
2. Discard all edges that are not part of some MSF Fy, - T
3. Remaining number of edges:<— M 01—

m' < M -n = 0(m/n)
4. Redistribute remaining edges to _Ai’ = 0(m'/n'*%) machines

* Randomly reassign each edge WM EW
W W W -4
1)) nZE \,\3‘ V\'l -t¢

* Algorithm reduces number of edges by factor ©(n¢) in 1 round.

0(1/¢) repetitions suffice to solve the problem
——

T o)

Theory of Distributed Systems Fabian Kuhn

Boruvka’s MST Algorithm :

FREIBURG

R
UNI

MST Fragment:
* A connected subtree F = (I, Er) of the MST

Minimum edge of MST fragment F = (V, Ef):
* Minimum weight edge connecting a node in I/ with a node in V(X/I/F

Lemma: For every MST fragment F, the minimum edge of F is in the MST

Fabian KL-Jhn\ 9

Theory of Distributed Systems

Boruvka’s MST Algorithm

UNI

FREIBURG

Algorithm description:
* Develops the MST in parallel phases
* [|nitially, each node is an MST fragment of size 1 (and with no edges)

* In each phase: add the minimum edge of each fragment to the MST

* Terminate when there is only one fragment

— or when there are no edges between different fragments

Theorem: The above alg. computes the MST in O (logn) phases.

Theory of Distributed Systems Fabian Kuhn

10

MST With Strongly Sublinear Memory: Ideas

UNI

FREIBURG

Assume: G = (V, E) with n nodes, m edges, memory S = n% for const. a« > 0
* Also assume that we have M = m/S - ¢ logn machines for suff. largec > 1

Representation of algorithm state:
 Each fragment has a unique ID, fragment ID of node u: FID(u)

* The machine storing an edge {u, v} knows the fragment IDs of u and v

8

Goal: implement one phase in time O(1):

* Assume that for each fragment ID x, there is some responsible machine M,
— Additional empty machines that are randomly assigned (e.g. by a hash function)

* For now, assume that each node u directly interacts with machine Mgpy,
M, | D\ 1 Ko
pLa -0 R
fage W v .
: g

Theory of Distributed Systems Fabian Kuhn 11

Implementing One Phase (First Attempt)

|
FRE:BURG

UNI

?c‘\wl K | U

Theory of Distributed Systems Fabian Kuhn 12

Small Change to the Basic Algorithm

UNI
FREIBURG

* |n each phase, each fragment initially picks a random color in {red, blue}
* Let {u, v} be the minimum edge of a fragment F

* Only add {u, v} to MST in current phase if F is a red fragment and {u, v}
connects to a blue fragment.

Theory of Distributed Systems Fabian Kuhn 13

Implementation with Aggregation Trees

FRE:BURG

UNI

&md«&“ﬁm\-x
o) %D
S DB,

]) b0y

c k"*ﬁh’x&‘?\» 1715 4'[X
S

V) <
X

Theory of Distributed Systems Fabian Kuhn 14

MST with Strongly Sublinear Memory

UNI
|

FREIBURG

Theorem: In the strongly sublinear memory regime (i.e., when S = n“ for a
constant a € (0,1)), an MST can be computed in time O(logn).

%0&vlcq\s @(60\-‘,%\“3 O(%Q f(ws,e>

O(1) nuude gse ‘»L«sz

Theory of Distributed Systems Fabian Kuhn 15

