
Chapter 11
Massively Parallel Computations

Part II

Theory of Distributed Systems

Fabian Kuhn

Theory of Distributed Systems Fabian Kuhn 2

Massively Parallel Computation (MPC) Model

MPC Model
• An abstract formal model to study large-scale parallel computations

– Aims to study parallelism at a more coarse-grained level than classic fine-grained
parallel models like PRAM
(models settings where communication is much more expensive than computation)

Formal Model
• Input of size ! words (1 word = # log! bits, for graphs, ! = # ')
• There are (≪ ! machines
• Each machine has a memory of * words, i.e., we need * ≥ !/(

– We typically assume that * = !- for a constant . < 1
• Time progresses in synchronous rounds, in each round,

every machine can send & receive * words to & from other machines
• Initially, the data is partitioned in an arbitrary way among the (machines

– Such that every machine has a roughly equal part of the data
– W.l.o.g., data is partitioned in a random way among the machines

Theory of Distributed Systems Fabian Kuhn 3

MPC Model for Graph Computations

Assumption: Input is a graph ! = #, %
• Number of nodes & = ' , number of edges (=) , nodes have IDs
• Input can be specified by the set) of edges

– each edge might have some other information, e.g., a weight
– for simplicity, assume that every node has degree ≥ 1

• Initially, each edge is given to a uniformly random machine
• We typically assume that , = -. ⁄0 1 = -. (/1

Strongly superlinear memory regime
3 = 4567 for a constant 7 > 9

Strongly sublinear memory regime

3 = 4: for a constant 9 < : < 5
Near-linear memory regime

3 = 4 ⋅ =>?@ ?>A4

Theory of Distributed Systems Fabian Kuhn 4

MST in the Near-Linear Memory Regime

• Assume that ! = # ⋅ log # (for a sufficiently large constant) > 0.
• Instead of MST, we consider a simpler, closely related probem

Connectivity / Component Identification
• At the end, algorithm needs to output a number , - for each node - ∈ /

such that , - = , 0 iff - and 0 are in the same connected component of 1.

Observations
• Algorithm in particular allows to compute whether 1 is connected
• The MST algorithm from before can be used to solve component identification

– The algorithm terminates when there are no more edges connecting different
fragments. The fragment IDs at the end can be used as outputs

• In combination with some binary search over the edge weights, component
identification can be used to also compute an MST
– Everything we will do can be extended to the MST problem

(at the cost of maybe a couple of log-factors in the required memory per machine)

Theory of Distributed Systems Fabian Kuhn 5

The Single-Round Coordinator Model

• We will study the problem in a different communication model

• There is a coordinator and one node for each ! ∈ #
• Node ! initially knows the set of its neighbors (i.e., all incident edges)
• Each node ! ∈ # is allowed to send one message to the coordinator
• Afterwards the coordinate needs to be able to compute the output
• We will assume that the nodes have access to shared randomness
• We will use the graph sketching technique

coordinator

$

Theory of Distributed Systems Fabian Kuhn 6

Graph Sketching: Warm Up 1

Single Cut Problem:
• Fix ! ⊆ #. Assume that there are $ ≥ 1 edges across the cut !, # ∖ ! .
• Goal: Coordinator needs to return one of the $ edges across the cut

Assume first that) = +:
• Define a unique ID for each edge e = -, . ∈ 0: ID 3 = ID - ∘ ID(.)
• Each node - ∈ ! computes XOR: as

XOR: ≔ <
=∈>∶:∈=

ID 3

• Each node - ∈ # sends XOR: to coordinator
• Coordinator computes

XOR@ ≔<
:∈@

XOR:

Theory of Distributed Systems Fabian Kuhn 7

!

Graph Sketching: Warm Up 1

Example:

"#

"$ "%

"&"'
ID *+ = 000

ID *. = 010

ID *0 = 001

ID *1 = 100

ID *2 = 011

Theory of Distributed Systems Fabian Kuhn 8

Graph Sketching: Warm Up 2

Assume that ! is an arbitrary value
• Let "# be the set of edges across the cut $, & ∖ $ ("# =))

Claim: If we use the same algorithm, XOR# = ⨁.∈01 ID 4 .

Assume that we are given an estimate 5! s.t.
5!
6 ≤ ! ≤ 5!:

• Sample each edge with probability ⁄1 :) and apply alg. with sampled edges

Theory of Distributed Systems Fabian Kuhn 9

Graph Sketching: Warm Up 2

Assume that ! > # and an estimate $! s.t.
$!
% ≤ ! ≤ $! is given

• Sample each edge with probability ⁄1)*
• Let +,- be the sampled edges of +, (across the cut)

Claim: ℙ +,- = 1 ≥ ⁄1 10.

ℙ +,- = 1 = * ⋅ 1)* ⋅ 1 − 1)*
456

≥
)*
2 ⋅
1
)* ⋅ 1 − 1)*

)4

≥ 1
2 ⋅ 4

56)4⋅
)4

≥ 1
10 .

Theory of Distributed Systems Fabian Kuhn 10

Graph Sketching: Warm Up 2

Discussion:
• How can we sample each edge with probability ⁄1 #$?

– Use shared randomness
• If we use the same algorithm, XOR(is equal to an edge of)(if)(* = 1

How can we distinguish ,-* = . from ,-* ≠ .?
• We need to make sure that

a) The bit-wise XOR of 0 or > 1 edge IDs is not equal to an edge ID
b) Edge IDs can be distinguished from the XORs of 0 or > 1 edge IDs

Theory of Distributed Systems Fabian Kuhn 11

Random Edge IDs

Edge ID of edge ! = #, % ∈ ' (assume () # < ()(%))
() ! = () # ∘ () % ∘ .!

• /0 is a random bit string of length 80 ln 5 where each bit is 1 with prob. 1/8
• Let /89 be the bitwise XOR of /0 for : ∈ ;89

Claim: Let < be the number of 1s in /89 . If ;89 = 0, then < = 0, otherwise
• If ;89 = 1, then 1 < < < 14 ln 5 with high probability
• If ;89 > 1, then < > 14 ln 5 with high probability

Proof Sketch:

Theory of Distributed Systems Fabian Kuhn 12

Random Edge IDs

Claim: Let ! be the number of 1s in #$% . If &$% = 0, then ! = 0, otherwise
• If &$% = 1, then 1 < ! < 14 ln - with high probability
• If &$% > 1, then ! > 14 ln - with high probability

Proof Sketch:

• If &$% ≥ 2, each of the 80 ln - bits of #$% is 1 with prob. ≥ 2 ⋅ 34 ⋅
5
4 >

3
6

Theory of Distributed Systems Fabian Kuhn 13

Connected Components with Graph Sketching

One phase of the Borůvka algorithm
• We need to find one outgoing edge for each fragment

– Then the coordinator can add a subset of these edges and reduce the number of
fragments by a factor 2

• We do not know the number of out-going edges of the different fragments
– And different fragments might have different numbers

• Use different sampling probabilities: "# ,
%
,

&
, … ,

"
% and send sketches for all

probabilities to coordinator
– For each instance, each (∈ * sends XOR of sampled edges to coordinator

• For each fragment, one of the probabilities succeeds with probability ≥ ⁄1 10
• When having Θ log 3 instances for each of the probabilities, we get an

outgoing edge for each fragment with high probability
• Each node can send 4 log5 3 bits to coordinator for one phase

Observation: The protocol does not depend on the fragments
• We can therefore send the information for all phases in parallel

Theory of Distributed Systems Fabian Kuhn 14

Connected Components with Graph Sketching

Theorem: In the coordinator model, there is a protocol where every node ! ∈ #
send $ log() bits to the coordinator s.t. the coordinator can solve the
connectivity & connected components problem.

Remarks:
• The number of bits can be reduced to $ log*)

– It is sufficient to succeed with constant prob. for each fragment in each phase
• Ω log*) bits are necessary [Nelson, Yu; 2019]
• Graph sketching has been introduced by [Ahn, Guha, McGregor; 2012]

Theory of Distributed Systems Fabian Kuhn 15

Implementation in the MPC Model

1. For every node ! ∈ #, create a responsible machine $%
• Send each edge &, ! to both $(and $%
• Make sure that each machine gets)* + edges

1. The randomness for each edge can be generated initially by the machine that
holds the edge
• Also send the randomness for the edge {&, !} to $(and $%

2. Use one additional machine for the coordinator

Theorem: In the MPC model with . =)* + , the connectivity & connected
components problem can be solve in * 1 rounds.

Theory of Distributed Systems Fabian Kuhn 16

Discussion

• Graph sketching can help in many different contexts, e.g.,
– also in the strongly-sublinear memory regime to save communication
– in the streaming model
– in the standard distributed model to save message

• In the strongly sublinear memory regime, it is not known whether it is
possible to be faster than ! log % rounds
– It is widely believed that there should be an Ω log % lower bound
– Even the following simple version of the problem seems to require Ω log % time

distinguish 2 cycles of length ⁄% 2 from one cycle of length %

