UNI
[

FREIBURG

"
Chapter 11

Massively Parallel Computations

Part i

Theory of Distributed Systems

Fabian Kuhn

Massively Parallel Computation (MPC) Model

UNI
FREIBURG

MPC Model

* An abstract formal model to study large-scale parallel computations

— Aims to study parallelism at a more coarse-grained level than classic fine-grained
parallel models like PRAM
(models settings where communication is much more expensive than computation)

Formal Model
* Input of size N words (1 word = O(log N) bits, for graphs, N = O(|E|))
e Thereare M < N machines
* Each machine has a memory of S words, i.e., we need S > N/M
— We typically assume that S = N¢ for a constantc < 1

* Time progresses in synchronous rounds, in each round,
every machine can send & receive S words to & from other machines

* |[nitially, the data is partitioned in an arbitrary way among the M machines
— Such that every machine has a roughly equal part of the data
— W.l.o.g., data is partitioned in a random way among the machines

Theory of Distributed Systems Fabian Kuhn 2

MPC Model for Graph Computations

UNI
FREIBURG

Assumption: Input is a graph G = (V, E)
* Number of nodes n = |V|, number of edges m = |E|, nodes have IDs
* Input can be specified by the set E of edges

— each edge might have some other information, e.g., a weight
— for simplicity, assume that every node has degree > 1

* Initially, each edge is given to a uniformly random machine
« We typically assume that S = O(N/M) = O0(m/M)

Strongly superlinear memory regime
S = n1*€ for a constant £ > 0
Strongly sublinear memory regime

S=n%foraconstant0 < a <1

Near-linear memory regime

S =n-polylogn

Theory of Distributed Systems Fabian Kuhn 3

MST in the Near-Linear Memory Regime

UNI
|

FREIBURG

* AssumethatS = n - (logn)¢ for a sufficiently large constant ¢ > 0.
* Instead of MIST, we consider a simpler, closely related probem

Connectivity / Component Identification

* At the end, algorithm needs to output a number C(u) for each nodeu € V
such that C(u) = C(v) iff u and v are in the same connected component of G.

Observations
e Algorithm in particular allows to compute whether G is connected

 The MST algorithm from before can be used to solve component identification

— The algorithm terminates when there are no more edges connecting different
fragments. The fragment IDs at the end can be used as outputs

* In combination with some binary search over the edge weights, component
identification can be used to also compute an MST

— Everything we will do can be extended to the MST problem
(at the cost of maybe a couple of log-factors in the required memory per machine)

Theory of Distributed Systems Fabian Kuhn 4

The Single-Round Coordinator Model

UNI

FREIBURG

* We will study the problem in a different communication model

coordinator

vV

* Thereis a coordinator and one node foreachv € V

* Node v initially knows the set of its neighbors (i.e., all incident edges)
e Eachnode v € IV is allowed to send one message to the coordinator
e Afterwards the coordinate needs to be able to compute the output

e We will assume that the nodes have access to shared randomness
 We will use the graph sketching technique

Theory of Distributed Systems Fabian Kuhn

Graph Sketching: Warm Up 1

UNI
|

FREIBURG

Single Cut Problem:
* Fix A € V. Assume that there are k > 1 edges across the cut (4,V \ A4).
e Goal: Coordinator needs to return one of the k edges across the cut

Assume first that k = 1.
* Define a unique ID for each edge e = {u, v} € E: ID(e) = ID(u) o ID(v)
* Each node u € A computes XOR,, as

XOR, = 69 ID(e)

* Each nodeu € V sends XOR,, to coordinator

XOR, := @ XOR,,

uea

* Coordinator computes

Theory of Distributed Systems Fabian Kuhn 6

Graph Sketching: Warm Up 1

UNI
|

FREIBURG

Example: ID(v,) = 000 ID(vs) = 011

ID(v,) = 001

A v, v,

ID(v,) = 100

ID(v;) = 010

Theory of Distributed Systems Fabian Kuhn 7

Graph Sketching: Warm Up 2

UNI
|

FREIBURG

Assume that k is an arbitrary value
* Let E, be the set of edges across the cut (4,V \ 4) (|E4| = k)

Claim: If we use the same algorithm, XOR, = @, ID(e).

&)

ESkSk:

« Sample each edge with probability 1/k and apply alg. with sampled edges

Assume that we are given an estimate k s.t.

Theory of Distributed Systems Fabian Kuhn 8

UNI
|

FREIBURG

Graph Sketching: Warm Up 2

—

. 7 k ..
Assume that k > 1 and an estimate k s.t. > < k < ks given

« Sample each edge with probability 1/k
* Let E, be the sampled edges of E4 (across the cut)

Claim: P(|E4| = 1) > 1/10.

P(|E'| = 1 =k-;-(1—:>
(1E4] = 1) 7 7
1 1\F
2—-:-(1—7)
2 & k
1 1z
>_ .4k
=72
1
> .
10

Theory of Distributed Systems Fabian Kuhn 9

UNI

Graph Sketching: Warm Up 2

FREIBURG

Discussion:
« How can we sample each edge with probability 1/k?

— Use shared randomness
 If we use the same algorithm, XOR, is equal to an edge of E; if |E,| = 1

How can we distinguish |E);| = 1 from |E| # 1?
e We need to make sure that

a) The bit-wise XOR of 0 or > 1 edge IDs is not equal to an edge ID
b) Edge IDs can be distinguished from the XORs of 0 or > 1 edge IDs

Theory of Distributed Systems Fabian Kuhn 10

Random Edge IDs

UNI

FREIBURG

Edge ID of edge e = {u, v} € E (assume ID(u) < ID(v))
ID(e) =ID(u) o ID(v) ° R,

* R, isarandom bit string of length 80 Inn where each bit is 1 with prob. 1/8

* Let R, be the bitwise XOR of R, for e € E,

Claim: Let X be the number of 1sin R,. If |[E4| = 0, then X = 0, otherwise
* If|Ez| =1,then1 < X < 14 Inn with high probability
* If|Ez| > 1, then X > 14 Inn with high probability

Proof Sketch:

Theory of Distributed Systems Fabian Kuhn

11

Random Edge IDs

UNI
|

FREIBURG

Claim: Let X be the number of 1sin R,. If |[E4| = 0, then X = 0, otherwise
* If|Ez| =1,then1 < X < 14 Inn with high probability

« If|E,| > 1, then X > 14 Inn with high probability

Proof Sketch:

« |If |[E4| = 2, each of the 80 Inn bits of Rj is 1 with prob. > 2 -%-§>

ul| =

Theory of Distributed Systems Fabian Kuhn 12

Connected Components with Graph Sketching

UNI
FREIBURG

One phase of the Bortvka algorithm

 We need to find one outgoing edge for each fragment

— Then the coordinator can add a subset of these edges and reduce the number of
fragments by a factor 2

 We do not know the number of out-going edges of the different fragments
— And different fragments might have different numbers

: . .1 2 4 1
* Use different sampling probabilities: T ...,Eand send sketches for all

probabilities to coordinator
— For each instance, each v € VV sends XOR of sampled edges to coordinator

* For each fragment, one of the probabilities succeeds with probability = 1/10

* When having O(log n) instances for each of the probabilities, we get an
outgoing edge for each fragment with high probability

 Each node can send O(log? n) bits to coordinator for one phase

Observation: The protocol does not depend on the fragments
* We can therefore send the information for all phases in parallel

Theory of Distributed Systems Fabian Kuhn 13

Connected Components with Graph Sketching _

UNI
FREIBURG

Theorem: In the coordinator model, there is a protocol where every node v € IV
send O (log* n) bits to the coordinator s.t. the coordinator can solve the
connectivity & connected components problem.

Remarks:

« The number of bits can be reduced to 0 (log>n)
— It is sufficient to succeed with constant prob. for each fragment in each phase

« Q(log3 n) bits are necessary [Nelson, Yu; 2019]
* Graph sketching has been introduced by [Ahn, Guha, McGregor; 2012]

Theory of Distributed Systems Fabian Kuhn 14

Implementation in the MPC Model

UNI
|

FREIBURG

1. Foreverynodev €V, create a responsible machine M,,
* Send each edge {u, v} to both M,, and M,
e Make sure that each machine gets O(n) edges

1. Therandomness for each edge can be generated initially by the machine that
holds the edge
* Also send the randomness for the edge {u, v} to M,, and M,,

2. Use one additional machine for the coordinator

Theorem: In the MPC model with S = O(n), the connectivity & connected
components problem can be solve in O(1) rounds.

Theory of Distributed Systems Fabian Kuhn 15

Discussion

UNI

* Graph sketching can help in many different contexts, e.g.,
— also in the strongly-sublinear memory regime to save communication
— in the streaming model
— in the standard distributed model to save message

* Inthe strongly sublinear memory regime, it is not known whether it is
possible to be faster than O (logn) rounds

— Itis widely believed that there should be an Q(logn) lower bound
— Even the following simple version of the problem seems to require Q(logn) time

distinguish 2 cycles of length n/2 from one cycle of length n

Theory of Distributed Systems Fabian Kuhn 16

FREIBURG

