# Theoretical Computer Science - Bridging Course Exercise Sheet 5 

Due: Tuesday, 28th of May 2023, 12:00 pm

## Exercise 1: Operation Shift

Consider a Turing machine $\mathcal{M}$ that is given an arbitrary input string over alphabet $\Sigma=\{1,2, \ldots, n\}$ on its input tape. We would like $\mathcal{M}$ to insert an empty cell, i.e., $\sqcup$, at the beginning of the tape without removing any symbol on the tape. As an example, the Turing machine is supposed to change the input tape of the form $\langle 2,4,4,6,1,8,4, \sqcup, \sqcup, \ldots\rangle$ to $\langle\sqcup, 2,4,4,6,1,8,4, \sqcup, \sqcup, \ldots\rangle$. Although this operation is not explicitly defined for a Turing machine, one can consider such an operation as shifting the whole string one cell to the right on the input tape.
(a) Give a formal definition of $\mathcal{M}$ to perform the desired operation such that $\mathcal{M}$ recognizes the language $\Sigma^{*}$.
(b) For $n=2$, i.e., $\Sigma=\{1,2\}$, draw the state diagram of your constructed Turing machine.

## Exercise 2: Constructing TMs (Part 1)

(3+3 Points)

1. Consider alphabet $A=\{1,2, \ldots, 9\}$. We call a string $S$ over $A$ a blue string, if and only if the string consisting of the odd-positioned symbols in $S$ is the reverse of the string consisting of the even-positioned symbols in $S$. For example $S=14233241$ is a blue string since the substring of the odd-positioned symbols is 1234 which is the reverse of the substring of the even-positioned symbols, i.e., 4321.
Design a Turing machine which accepts all blue strings over $A$. You do not need to provide a formal description of the Turing machine but your description has to be detailed enough to explain every possible step of a computation.
2. Construct a Turing machine that decides on the languages $C_{1}=\left\{a^{i} b^{j} c^{k} \mid i-j=k\right.$ and $\left.i, j, k \geq 1\right\}$ and $C_{2}=\left\{a^{i} b^{j} c^{k} \mid i \times j=k\right.$ and $\left.i, j, k \geq 1\right\}$.

## Exercise 3: Constructing TMs (Part 2) (3+2+2+1 Points)

Let $\Sigma=\{0,1\}$. For a string $s=s_{1} s_{2} \ldots s_{n}$ with $s_{i} \in \Sigma$, let $s^{R}=s_{n} s_{n-1} \ldots s_{1}$ be the reversed string. Palindromes are strings $s$ for which $s=s^{R}$. Then $L=\left\{\right.$ sas $\left.^{R} \mid s \in \Sigma^{*}, a \in \Sigma \cup\{\varepsilon\}\right\}$ is the language of all palindromes over $\Sigma$.
(a) Give a state diagram of a Turing machine recognizing $L$.
(b) Give the maximum number (or a close upper bound for the number) of head movements your Turing machine makes until it halts, if started with an input string $s \in \Sigma^{*}$ of length $|s|=n$ on its tape.
(c) Describe (informally) the behavior of a 2-tape Turing machine which recognizes $L$ and uses significantly fewer head movements on long inputs than your 1-tape Turing machine.
(d) Give the maximum number (or a close upper bound for the number) of head movements your Turing machine makes on any of the two tapes until it halts, if started with an input string $s \in \Sigma^{*}$ of length $|s|=n$ on the first tape.

