Theoretical Computer Science - Bridging Course Exercise Sheet 7

Due: Monday, 11th of June 2024, 12:00 pm

Exercise 1: Undecidable or Not Turing recongnizable Problems (4+4 Points)

1. Show that $E Q_{T M}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1}, M_{2}\right.$ are Turing Machines and $\left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$ is undecidable.

Hint: You may use that $E_{T M}=\{\langle M\rangle \mid M$ is a Turing Machine and $L(M)=\emptyset\}$ is undecidable.
2. Fix an enumeration of all Turing machines (that have input alphabet Σ): $\left\langle M_{1}\right\rangle,\left\langle M_{2}\right\rangle,\left\langle M_{3}\right\rangle, \ldots$ Fix also an enumeration of all words over $\Sigma: w_{1}, w_{2}, w_{3}, \ldots$

Prove that language $L=\left\{w \in \Sigma^{*} \mid w=w_{i}\right.$, for some i, and M_{i} does not accept $\left.w_{i}\right\}$ is not Turing recognizable.

Hint: Try to find a contradiction to the existence of a Turing machine that recognizes L.

Exercise 2: The Halting Problem Revisited

Show that both the halting problem and its special version are both undecidable.

1. The halting problem is defined as

$$
H=\{\langle M, w\rangle \mid\langle M\rangle \text { encodes a TM and } M \text { halts on string } w\} .
$$

Hint: Assume H is decidable and try to reach a contradiction by showing that some known undecidable problem (cf. from the lecture) is decidable.
2. The special halting problem is defined as

$$
H_{s}=\{\langle M\rangle \mid\langle M\rangle \text { encodes a TM and } M \text { halts on }\langle M\rangle\} .
$$

Hint: Assume that M is a TM which decides H_{s} and then construct a TM which halts iff M does not halt. Use this construction to find a contradiction.

Exercise 3: \mathcal{O}-Notation Formal Proofs

Roughly speaking, the set $\mathcal{O}(f)$ contains all functions that are not growing faster than the function f when additive or multiplicative constants are neglected. Formally:

$$
g \in \mathcal{O}(f) \Longleftrightarrow \exists c>0, \exists M \in \mathbb{N}, \forall n \geq M: g(n) \leq c \cdot f(n)
$$

For the following pairs of functions, state whether $f \in \mathcal{O}(g)$ or $g \in \mathcal{O}(f)$ or both. Proof your claims (you do not have to prove a negative result \notin, though).
(a) $f(n)=100 n, g(n)=0.1 \cdot n^{2}$
(b) $f(n)=\sqrt[3]{n^{2}}, g(n)=\sqrt{n}$
(c) $f(n)=\log _{2}\left(2^{n} \cdot n^{3}\right), g(n)=3 n$

Exercise 4: Sort Functions by Asymptotic Growth

Give a sequence of the following functions sorted by asymptotic growth, i.e., for consecutive functions g, f in your sequence, it should hold $g \in \mathcal{O}(f)$. Write " $g \cong f$ " if $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(f)$.

$\log _{2}(n!)$	\sqrt{n}	2^{n}	$\log _{2}\left(n^{2}\right)$
3^{n}	n^{100}	$\log _{2}(\sqrt{n})$	$\left(\log _{2} n\right)^{2}$
$\log _{10} n$	$10^{100} \cdot n$	$n!$	$n \log _{2} n$
$n \cdot 2^{n}$	n^{n}	$\sqrt{\log _{2} n}$	n^{2}

