

Theoretical Computer Science - Bridging Course Exercise Sheet 9

Due: Wednesday, 26th of June, 13:00 $\rm pm$

Exercise 1: Class \mathcal{NPC} part 1

Let L_1, L_2 be languages (problems) over alphabets Σ_1, Σ_2 . Then $L_1 \leq_p L_2$ (L_1 is polynomially reducible to L_2), iff a function $f: \Sigma_1^* \to \Sigma_2^*$ exists, that can be calculated in polynomial time and

$$\forall s \in \Sigma_1^* : s \in L_1 \iff f(s) \in L_2.$$

Language L is called \mathcal{NP} -hard, if all languages $L' \in \mathcal{NP}$ are polynomially reducible to L, i.e.

 $L \text{ is } \mathcal{NP}\text{-hard} \iff \forall L' \in \mathcal{NP} : L' \leq_p L.$

The reduction relation \leq_p is transitive $(L_1 \leq_p L_2 \text{ and } L_2 \leq_p L_3 \Rightarrow L_1 \leq_p L_3)$. Therefore, in order to show that L is \mathcal{NP} -hard, it suffices to reduce a known \mathcal{NP} -hard problem \tilde{L} to L, i.e. $\tilde{L} \leq_p L$. Finally a language is called \mathcal{NP} -complete ($\Leftrightarrow: L \in \mathcal{NPC}$), if

- 1. $L \in \mathcal{NP}$ and
- 2. L is \mathcal{NP} -hard.

(a) Show CLIQUE:= { $\langle G, k \rangle | G$ has a clique of size at least k } $\in \mathcal{NPC}$.

(b) Show HITTINGSET := { $\langle \mathcal{U}, S, k \rangle$ | universe \mathcal{U} has subset of size at most k that hits all sets in $S \subseteq 2^{\mathcal{U}}$ } $\in \mathcal{NPC}$.

For both parts, use the fact that VERTEXCOVER := $\{\langle G, k \rangle \mid \text{Graph } G \text{ has a vertex cover of size at most } k\} \in \mathcal{NPC}.$

Hint: For the poly. transformation (\leq_p) you have to describe an algorithm (with poly. run-time!) that transforms:

for part (a), an instance $\langle G, k \rangle$ of VERTEXCOVER into an instance $\langle G', k' \rangle$ of CLIQUE s.t. a vertex cover of size $\leq k$ in G becomes a clique of G' of size $\geq k'$ vice versa(!)

for part (b), an instance $\langle G, k \rangle$ of VERTEXCOVER into an instance $\langle \mathcal{U}, S, k' \rangle$ of HITTINGSET, s.t. a vertex cover of size $\leq k$ in G becomes a hitting set of \mathcal{U} of size $\leq k'$ for S and vice versa(!).

Exercise 2: Class \mathcal{NPC} part 2

1. Given a set U of n elements ('universe') and a collection $S \subseteq \mathcal{P}(U)$ of subsets of U, a selection $C_1, \ldots, C_k \in S$ of k sets is called a *set cover* of (U, S) of size k if $C_1 \cup \ldots \cup C_k = U$. Show that the problem

SETCOVER := { $\langle U, S, k \rangle | U$ is a set, $S \subseteq \mathcal{P}(U)$ and there is a set cover of (U, S) of size k}

is NP-complete.

You may use that

DOMINATINGSET = { $\langle G, k \rangle \mid G$ has a dominating set with k nodes}.

is NP-complete.

2. Show DOMINATINGSET := { $\langle G, k \rangle$ | Graph G has a dominating set of size at most k} $\in \mathcal{NPC}$. Use that VERTEXCOVER := { $\langle G, k \rangle$ | Graph G has a vertex cover of size at most k} $\in \mathcal{NPC}$. Remark: A vertex cover is a subset of nodes of G such that every edge of G is incident to a node in the subset.

Hint: Transform a Graph G into a Graph G' such that a vertex cover of G will result in a dominating set G' and vice versa(!). Note that a dominating set is not necessarily a vertex cover $(G = (\{v_1, v_2, v_3, v_4\}, \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_4\}\}))$ has the dominating set $\{v_1, v_4\}$ which is not a vertex cover). Also a vertex cover is not necessarily a dominating set (consider isolated notes).