Theoretical Computer Science - Bridging Course Exercise Sheet 10

Due: Tuesday, 2nd of July 2024, 12:00 pm

Exercise 1: Propositional Logic: Basic Terms ($1+1+1+1$ Points)

Let $\Sigma:=\{p, q, r\}$ be a set of atoms. An interpretation $I: \Sigma \rightarrow\{T, F\}$ maps every atom to either true or false. Inductively, an interpretation I can be extended to composite formulae φ over Σ (cf. lecture). We write $I \models \varphi$ if φ evaluates to T (true) under I. In case $I \models \varphi, I$ is called a model for φ.

For each of the following formulae, give all interpretations which are models. Make a truth table and/or use logical equivalencies to find all models (document your steps). Which of these formulae are satisfiable, which are unsatisfiable and which are tautologies?
(a) $\varphi_{1}=(p \wedge \neg q) \vee(\neg p \vee q)$
(b) $\varphi_{2}=(\neg p \wedge(\neg p \vee q)) \leftrightarrow(p \vee \neg q)$
(c) $\varphi_{3}=(p \wedge \neg q) \rightarrow \neg(p \wedge q)$
(d) $\varphi_{4}=(p \wedge q) \rightarrow(p \vee r)$

Remark: $a \rightarrow b: \equiv \neg a \vee b, a \leftrightarrow b: \equiv(a \rightarrow b) \wedge(b \rightarrow a), a \nrightarrow b: \equiv \neg(a \rightarrow b)$.

Exercise 2: CNF and DNF

(a) Convert $\varphi_{1}:=(p \rightarrow q) \rightarrow(\neg r \wedge q)$ into Conjunctive Normal Form (CNF).
(b) Convert $\varphi_{2}:=\neg((\neg p \rightarrow \neg q) \wedge \neg r)$ into Disjunctive Normal Form (DNF).

Remark: Use the known logical equivalencies given in the lecture slides to do the necessary transformations. State which equivalency you are using in each step.

Exercise 3: Logical Entailment

A knowledge base $K B$ is a set of formulae over a given set of atoms Σ. An interpretation I of Σ is called a model of $K B$, if it is a model for all formulae in $K B$. A knowledge base $K B$ entails a formula φ (we write $K B \models \varphi$), if all models of $K B$ are also models of φ.

Let $K B:=\{p \vee q, \neg r \vee p\}$. Show or disprove that $K B$ logically entails the following formulae.
(a) $\varphi_{1}:=(p \wedge q) \vee \neg(\neg r \vee p)$
(b) $\varphi_{2}:=(q \leftrightarrow r) \rightarrow p$

Exercise 4: Inference Rules and Calculi

Let $\varphi_{1}, \ldots, \varphi_{n}, \psi$ be propositional formulae. An inference rule

means that if $\varphi_{1}, \ldots, \varphi_{n}$ are 'considered true', then ψ is 'considered true' as well ($n=0$ is the special case of an axiom). A (propositional) calculus \mathbf{C} is described by a set of inference rules.
Given a formula ψ and knowledge base $K B:=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ (where $\varphi_{1}, \ldots, \varphi_{n}$ are formulae) we write $K B \vdash_{\mathbf{C}} \psi$ if ψ can be derived from $K B$ by starting from a subset of $K B$ and repeatedly applying inference rules from the calculus \mathbf{C} to 'generate' new formulae until ψ is obtained.

Consider the following two calculi, defined by their inference rules (φ, ψ, χ are arbitrary formulae).

$$
\begin{array}{ll}
\mathbf{C}_{\mathbf{1}}: & \frac{\varphi \rightarrow \psi, \psi \rightarrow \chi}{\varphi \rightarrow \chi}, \frac{\neg \varphi \rightarrow \psi}{\neg \psi \rightarrow \varphi}, \frac{\varphi \leftrightarrow \psi}{\varphi \rightarrow \psi, \psi \rightarrow \varphi} \\
\mathbf{C}_{\mathbf{2}}: & \frac{\varphi, \varphi \rightarrow \psi}{\psi}, \frac{\varphi \wedge \psi}{\varphi, \psi}, \frac{(\varphi \wedge \psi) \rightarrow \chi}{\varphi \rightarrow(\psi \rightarrow \chi)}
\end{array}
$$

Using the respective calculus, show the following derivations (document your steps).
(a) $\{p \leftrightarrow \neg r, \neg q \rightarrow r\} \vdash_{\mathbf{C}_{\mathbf{1}}} p \rightarrow q$
(b) $\{p \wedge q, p \rightarrow r,(q \wedge r) \rightarrow s\} \vdash_{\mathbf{C}_{2}} s$

Remark: Inferences of a given calculus are purely syntactical, i.e. rules only apply in their specific form (much like a grammar) and no other logical transformations not given in the calculus are allowed.

Exercise 5: Resolution Calculus

Due to the Contradiction Theorem (cf. lecture) for every knowledge base $K B$ and formula φ it holds

$$
K B \models \varphi \quad \Longleftrightarrow \quad K B \cup\{\neg \varphi\} \models \perp
$$

Remark: \perp is a formula that is unsatisfiable.
In order to show that $K B$ entails φ, we show that $K B \cup\{\neg \varphi\}$ entails a contradiction. A calculus \mathbf{C} is called refutation-complete if for every knowledge base $K B$

$$
K B \vDash \perp \quad \Longrightarrow \quad K B \vdash_{\mathbf{C}} \perp
$$

Hence, given a refutation-complete calculus \mathbf{C} it suffices to show $K B \cup\{\neg \varphi\} \vdash_{\mathbf{C}} \perp$ to prove $K B \models \varphi$. The Resolution Calculus \mathbf{R} is a formal way to do a prove by contradiction. It is correct and refutationcomplete ${ }^{1}$ for knowledge bases that are given in Conjunctive Normal Form (CNF). A knowledge base $K B$ is in CNF if it is of the form $K B=\left\{C_{1}, \ldots, C_{n}\right\}$ where its clauses $C_{i}=\left\{L_{i, 1}, \ldots, L_{i, m_{i}}\right\}$ each consist of m_{i} literals $L_{i, j}$.
Remark: $K B$ represents the formula $C_{1} \wedge \ldots \wedge C_{n}$ with $C_{i}=L_{i, 1} \vee \ldots \vee L_{i, m_{i}}$.
The Resolution Calculus has only one inference rule, the resolution rule:

$$
\mathbf{R}: \quad \frac{C_{1} \cup\{L\}, C_{2} \cup\{\neg L\}}{C_{1} \cup C_{2}}
$$

Remark: L is a literal and $C_{1} \cup\{L\}, C_{2} \cup\{\neg L\}$ are clauses in $K B\left(C_{1}, C_{2}\right.$ may be empty). To show $K B \vdash_{\mathbf{R}} \perp$, you need to apply the resolution rule, until you obtain two conflicting one-literal clauses L and $\neg L$. These entail the empty clause (defined as $\square)$, i.e. a contradiction $\left(\{L\},\{\neg L\} \vdash_{\mathbf{R}} \perp\right)$.

[^0](a) We want to show $\{p \wedge q, p \rightarrow r,(q \wedge r) \rightarrow u\} \vDash u$. First convert this problem instance into a form that can be solved via resolution as described above. Document your steps.
(b) Now, use resolution to show $\{p \wedge q, p \rightarrow r,(q \wedge r) \rightarrow u\} \vDash u$.
(c) Consider the sentence "Heads, I win". "Tails, you lose". Design a propositional $K B$ that represents these sentences (create the propositions and rules required). Then use propositional resolution to prove that I always win.

[^0]: ${ }^{1}$ Complete calculi are impractical, since they have too many inference rules. More inference rules make automated proving with a computer significantly more complex. The Resolution Calculus is an appropriate technique to avoid this additional complexity, since it has only one inference rule.

