Theoretical Computer Science - Bridging Course Sample Solution Exercise Sheet 7

Due: Monday, 4th of December 2023, 12:00 pm

Exercise 1: Undecidable or Not Turing recongnizable Problems (4+4 Points)

1. Show that $E Q_{T M}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1}, M_{2}\right.$ are Turing Machines and $\left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$ is undecidable.

Hint: You may use that $E_{T M}=\{\langle M\rangle \mid M$ is a Turing Machine and $L(M)=\emptyset\}$ is undecidable.
2. Fix an enumeration of all Turing machines (that have input alphabet Σ): $\left\langle M_{1}\right\rangle,\left\langle M_{2}\right\rangle,\left\langle M_{3}\right\rangle, \ldots$. Fix also an enumeration of all words over $\Sigma: w_{1}, w_{2}, w_{3}, \ldots$
Prove that language $L=\left\{w \in \Sigma^{*} \mid w=w_{i}\right.$, for some i, and M_{i} does not accept $\left.w_{i}\right\}$ is not Turing recognizable.
Hint: Try to find a contradiction to the existence of a Turing machine that recognizes L.

Sample Solution

1. Assume we had a TM R that decides $E Q_{T M}$. We construct a decider F for $E_{T M}$ in the following and this will lead to a contradiction.
$F=$ "On input $\langle M\rangle$ where M is a TM:

- Construct a TM B that rejects all inputs.
- Run R on $\langle M, B\rangle$. Accept iff R accepts."

2. Assume M is a turing machine recognizing L. Then there is an i such that $M=M_{i}$.

Assume M accepts w_{i}. One the one hand this implies $w_{i} \in L$ (as M recognizes L), on the other hand it implies $w_{i} \notin L$ (by the definition of L), leading to a contradiction.

Now assume M does not accept w_{i}. One the one hand this implies $w_{i} \notin L$ (as M recognizes L), on the other hand it implies $w_{i} \in L$ (by the definition of L), leading to a contradiction.

So in either case we get a contradiciton. Therefore such a TM can not exist.

Exercise 2: The Halting Problem Revisited

Show that both the halting problem and its special version are both undecidable.

1. The halting problem is defined as

$$
H=\{\langle M, w\rangle \mid\langle M\rangle \text { encodes a TM and } M \text { halts on string } w\} .
$$

Hint: Assume H is decidable and try to reach a contradiction by showing that some known undecidable problem (cf. from the lecture) is decidable.
2. The special halting problem is defined as

$$
H_{s}=\{\langle M\rangle \mid\langle M\rangle \text { encodes a TM and } M \text { halts on }\langle M\rangle\}
$$

Hint: Assume that M is a TM which decides H_{s} and then construct a TM which halts iff M does not halt. Use this construction to find a contradiction.

Sample Solution

1. Assume H is decidable, hence there exists TM R that decides on it.

We know from the lecture that the $A_{T M}$ problem is undecidable.
We reach a contradiction by constructing a TM S that decides on $A_{T M}$ as follows.
$S=$ " On input $<M, w\rangle$, where M is a TM and w is a string:

1. Run TM R on $<M, w>$, if R rejects, reject.
2. If R accepts, simulate M on w until it halts. If M accepts, accept; if M rejects, reject."
3. Assume that H_{s} is decidable. Then there is a TM M which decides it. Now let us define a TM \tilde{M} as follows. TM \tilde{M} on input w uses M to test whether $w \in H_{s}$. If $w \in H_{s}$ it enters a non terminating loop, otherwise it accepts w. We now apply \tilde{M} on input $\langle\tilde{M}\rangle$ and construct a contradiction.
$\langle\tilde{M}\rangle \notin H_{s}$: Then M rejects $\langle\tilde{M}\rangle$. Thus \tilde{M} accepts $\langle\tilde{M}\rangle$ by the definition of \tilde{M}. Thus, $\langle\tilde{M}\rangle \in H_{s}$, a contradiction.
$\langle\tilde{M}\rangle \in H_{s}$: Then M accepts $\langle\tilde{M}\rangle$, i.e., \tilde{M} enters a non terminating loop on $\langle\tilde{M}\rangle$ and does not halt on $\langle\tilde{M}\rangle$ which means that $\langle\tilde{M}\rangle \notin H_{s}$, a contradiction.

$$
\langle\tilde{M}\rangle \in H_{s} \Leftrightarrow\langle\tilde{M}\rangle \notin H_{s}
$$

Exercise 3: \mathcal{O}-Notation Formal Proofs

(1+2+3 Points)
Roughly speaking, the set $\mathcal{O}(f)$ contains all functions that are not growing faster than the function f when additive or multiplicative constants are neglected. Formally:

$$
g \in \mathcal{O}(f) \Longleftrightarrow \exists c>0, \exists M \in \mathbb{N}, \forall n \geq M: g(n) \leq c \cdot f(n)
$$

For the following pairs of functions, state whether $f \in \mathcal{O}(g)$ or $g \in \mathcal{O}(f)$ or both. Proof your claims (you do not have to prove a negative result \notin, though).
(a) $f(n)=100 n, g(n)=0.1 \cdot n^{2}$
(b) $f(n)=\sqrt[3]{n^{2}}, g(n)=\sqrt{n}$
(c) $f(n)=\log _{2}\left(2^{n} \cdot n^{3}\right), g(n)=3 n \quad$ Hint: You may use that $\log _{2} n \leq n$ for all $n \in \mathbb{N}$.

Sample Solution

(a) It is $100 n \in \mathcal{O}\left(0.1 n^{2}\right)$. To show that we require constants c, M such that $100 n \leq c \cdot 0.1 n^{2}$ for all $n \geq M$. Obviously this is the case for $c=1000$ and $M=1$.
(b) We have $g(n) \in O(f(n))$. Let $c:=1$ and $M:=1$. Then we have

$$
\begin{array}{lrl}
& g(n) & \leq c \cdot f(n) \\
\Leftrightarrow & \sqrt{n} & \leq n^{2 / 3} \\
\Leftrightarrow & 1 & \leq n^{1 / 6} \\
\Leftrightarrow & 1 & \leq n \tag{4}
\end{array}
$$

The last inequality is satisfied because $n \geq M=1$.
(c) $f(n) \in O(g(n))$ holds. We give $c>0$ and $M \in \mathbb{N}$ such that for all $n \geq M: \log _{2}\left(2^{n} \cdot n^{3}\right) \leq c \cdot n$. Indeed,

$$
\begin{aligned}
& \log _{2}\left(2^{n} \cdot n^{3}\right) \\
= & \log _{2}\left(2^{n}\right)+\log _{2}\left(n^{3}\right) \\
= & n+3 \cdot \log _{2}(n) \\
\leq & n+3 n=4 n .
\end{aligned}
$$

Thus $\log _{2}\left(2^{n} \cdot n^{3}\right) \leq c \cdot 3 n$ for $n \geq M:=1$ and $c:=4 / 3$.
We also have that $g(n) \in O(f(n))$ holds because

$$
g(n)=3 n \leq 3\left(n+3 \cdot \log _{2}(n)\right)=3\left(\log _{2}\left(2^{n} \cdot n^{3}\right)\right)=3 \cdot f(n)
$$

Thus with $c=3$ and for $n \geq M:=1$ we have $g(n) \leq c f(n)$.

Exercise 4: Sort Functions by Asymptotic Growth

Give a sequence of the following functions sorted by asymptotic growth, i.e., for consecutive functions g, f in your sequence, it should hold $g \in \mathcal{O}(f)$. Write " $g \cong f$ " if $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(f)$.

$\log _{2}(n!)$	\sqrt{n}	2^{n}	$\log _{2}\left(n^{2}\right)$
3^{n}	n^{100}	$\log _{2}(\sqrt{n})$	$\left(\log _{2} n\right)^{2}$
$\log _{10} n$	$10^{100} \cdot n$	$n!$	$n \log _{2} n$
$n \cdot 2^{n}$	n^{n}	$\sqrt{\log _{2} n}$	n^{2}

Sample Solution

For clarification, we write $g \lesssim f$ if $g \in \mathcal{O}(f)$, but not $f \in \mathcal{O}(g)$.

	$\sqrt{\log _{2} n}$	\lesssim	$\log _{2}(\sqrt{n})$	\cong	$\log _{10} n$	\cong	$\log _{2}\left(n^{2}\right)$
\lesssim	$\left(\log _{2} n\right)^{2}$	\lesssim	\sqrt{n}	\lesssim	$10^{100} n$	\lesssim	$n \log _{2} n$
\cong	$\log _{2}(n!)$	\lesssim	n^{2}	\lesssim	n^{100}	\lesssim	2^{n}
\lesssim	$n \cdot 2^{n}$	\lesssim	3^{n}	\lesssim	n !	\lesssim	n^{n}

