
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
Z. Parsaeian

Theoretical Computer Science - Bridging Course

Sample Solution Exercise Sheet 8
Due: Monday, 11th of December 2023, 12:00 pm

Exercise 1: Class P (1+3+3 Points)

P is the set of languages (∼= decision problems) which can be decided by an algorithm whose runtime
can be bounded by p(n), where p is a polynomial and n the size of the respective input (problem
instance). Show that the following languages are in the class P. Since it is typically easy (i.e. feasible
in polynomial time) to decide whether an input is well-formed, your algorithm only needs to consider
well-formed inputs. Use the O-notation to bound the run-time of your algorithm.

(a) Palindrome := {w ∈ {0, 1}∗ | w is a Palindrome}

(b) 4-Clique := {⟨G⟩ | G has a clique of size at least 4}

(c) 5-VertexCover := {⟨G⟩ | G has a vertex cover of size at most 5}.

Remarks:

• In both problems G is an undirected, simple graph.

• A clique in a graph G = (V,E) is a set C ⊆ V such that for all u, v ∈ C : {u, v} ∈ E.

• A vertex cover of G = (V,E) is a subset C ⊆ V of nodes, such that for all {u, v} ∈ E it holds
that u ∈ C or v ∈ C.

Sample Solution

(a) We have already seen in sheet 5 that the problem can be solved with a Turing machine with O(n2)
head movements. The same idea/algorithm shows that the problem is in P.

For both problems, let G = (V,E) and |V | = n. Then we know |E| ∈ O(n2).

(b) We go through all possible 4-tuples (v1, v2, v3, v4) of V such that all the vi’s are different from each
other. There exists

(
n
4

)
∈ O(n4) such 4-tuples. For each such 4-tuple (v1, v2, v3, v4), we examine

whether each possible pair of that 4-tuple share an edge in E. Since |E| ∈ O(n2), this examination
can be done in O(n2) time. If we found one 4-tuple that satisfies the requirement, we found a
clique of size 4, the algorithm halts and accept. Otherwise, when we finish examining all possible
4-tuples, the algorithm halts and reject (since there is no clique of size at least 4 in G). The
runtime of the above procedure is O(n6), thus 4-Clique ∈ P.

(c) We test for all of the
(|V |

5

)
∈ O(n5) possible subsets C ⊆ V of size 5, whether they cover all edges.

To check if C ⊆ V covers all edges we have to check for each edge {u, v} whether u ∈ C or v ∈ C,
which takes at most ∈ O(|E||C|) ∈ O(n2) time. If we find a vertex cover (all edges covered for
one subset C), then the algorithm halts and accepts. After all subsets were tested negatively, the
algorithm halts and rejects (since there is no vertex cover of size at most 5 in G). The runtime of
the above procedure is O(n7), thus 5-VertexCover ∈ P.

Note: in case not stated that n > 5 in the problem definition, then one can add an extra check
(of whether n ≤ 5 or not) initially in the algorithm, which can still be done in polynomial time.
Now, if n ≤ 5, then the algorithm can directly halt and accept (since it is always true that all
the nodes in any graph make up a vertex cover for that graph and hence in our case for n ≤ 5, all
the nodes of G is a vertex cover of size at most 5, so we know there exists one without the need
of finding it), else it continues performing the algorithm above.
Similarly, for the 4-Clique problem, we can check intially if n ≤ 3 or not, and if so, then the
algorithm should directly halt and reject (since there will be no clique of size at least 4 in the
graph anyway), else it continues performing the algorithm for the 4-Clique above.

Exercise 2: The Class NP (Points)

Show that the following problems (languages) are in class NP.

(a) Given a graph G = (V,E) and an integer k, it is required to determine whether G contains a
clique of size at least k, hence consider the following problem:
Clique :={⟨G, k⟩ |G has a clique of size at least k }.

(b) A hitting set H ⊆ U for a given universe U and a set S = {S1, S2, . . . , Sm} of subsets Si ⊆ U ,
fulfills the property H ∩ Si ̸= ∅ for 1 ≤ i ≤ m (H ’hits’ at least one element of every Si).

Given a universe set U , a set S of subsets of U , and a positive integer k, it is required to determine
whether U contains a hitting set of size at most k, hence consider the following problem:
HittingSet :={⟨U , S, k⟩ | universe U has subset of size ≤ k that hits all sets in S ⊆ 2U}.1

Sample Solution

We use the Guess and Check approach (and hence try building a polynomial time verifier) to show
that the two problems are in NP.

(a) Consider the following verifier for Clique on input ⟨⟨G, k⟩, C⟩, that verifies in polynomial time
that G has a clique of size at least k, where the idea of the certificate C is the clique. Let |V | = n.
The verifier first tests if C has at least k different nodes from G with O(|C| + |C| · n + |C|2)
comparisons , then it tests whether (u, v) ∈ E for every u, v ∈ C in O(|C|2 · n2) comparisons. If
both these tests pass, accept; else reject. Since the certificate has polynomial length in the input
size, therefore the total running time is polynomial in the input size. So Clique has a polynomial
time verifier. Therefore, Clique is in NP.

(b) Consider the following verifier for HittingSet on input ⟨⟨U , S, k⟩,H⟩, that verifies in polynomial
time that U has a hitting set of size at most k given S, where the idea of the certificate H is the
hitting set. Let λ be the sum of the sizes of all the subsets Si in S and δ the size of U . Note that
we can always check if A is a subset of B as we are doing before with the following brute-force
algorithm: ∀a ∈ A check if ∃b ∈ B : a = b which needs O(|A| · |B|) comparisons.
The verifier first tests whether H is a subset of U that has at most k elements with O(|H| +
|H| · δ) comparisons. Then it tests whether it contains at least one element from each subset Si

in the collection S, with O(λ · |H|) comparisons. If both tests pass, it accepts, and otherwise it
rejects. Since the certificate has polynomial length in the input size, therefore the total running
time is polynomial in the input size. So HittingSet has a polynomial time verifier. Therefore,
HittingSet belongs in NP.

1The power set 2U of some ground set U is the set of all subsets of U . So S ⊆ 2U is a collection of subsets of U .

