Theoretical Computer Science - Bridging Course Sample Solution Exercise Sheet 10

Due: Monday, 8th of January 2024, 12:00 pm

Exercise 1: Propositional Logic: Basic Terms

Let $\Sigma:=\{p, q, r\}$ be a set of atoms. An interpretation $I: \Sigma \rightarrow\{T, F\}$ maps every atom to either true or false. Inductively, an interpretation I can be extended to composite formulae φ over Σ (cf. lecture). We write $I \models \varphi$ if φ evaluates to T (true) under I. In case $I \models \varphi, I$ is called a model for φ.

For each of the following formulae, give all interpretations which are models. Make a truth table and/or use logical equivalencies to find all models (document your steps). Which of these formulae are satisfiable, which are unsatisfiable and which are tautologies?
(a) $\varphi_{1}=(p \wedge \neg q) \vee(\neg p \vee q)$
(b) $\varphi_{2}=(\neg p \wedge(\neg p \vee q)) \leftrightarrow(p \vee \neg q)$
(c) $\varphi_{3}=(p \wedge \neg q) \rightarrow \neg(p \wedge q)$
(d) $\varphi_{4}=(p \wedge q) \rightarrow(p \vee r)$

Remark: $a \rightarrow b: \equiv \neg a \vee b, a \leftrightarrow b: \equiv(a \rightarrow b) \wedge(b \rightarrow a), a \nrightarrow b: \equiv \neg(a \rightarrow b)$.

Sample Solution

(a) See Table 1. The result shows that φ_{1} is a tautology.
(b) See Table 2. The result shows that φ_{2} is satisfiable.
(c) $\varphi_{3} \equiv \neg(p \wedge \neg q) \vee(\neg p \vee \neg q) \equiv(\neg p \vee q) \vee(\neg p \vee \neg q) \equiv \neg p \vee q \vee \neg p \vee \neg q \equiv \neg p \vee \neg q \vee q$ which is a tautology as either q or $\neg q$ holds.
(d) See Table 3. The result shows that φ_{4} is a tautology.

Exercise 2: CNF and DNF

(a) Convert $\varphi_{1}:=(p \rightarrow q) \rightarrow(\neg r \wedge q)$ into Conjunctive Normal Form (CNF).
(b) Convert $\varphi_{2}:=\neg((\neg p \rightarrow \neg q) \wedge \neg r)$ into Disjunctive Normal Form (DNF).

Remark: Use the known logical equivalencies given in the lecture slides to do the necessary transformations. State which equivalency you are using in each step.

model	p	q	$p \wedge \neg q$	$\neg p \vee q$	φ_{1}
$\boldsymbol{\checkmark}$	0	0	0	1	1
\checkmark	0	1	0	1	1
\checkmark	1	0	1	1	1
$\boldsymbol{\checkmark}$	1	1	0	1	1

Tabelle 1: Truthtable for Exercise 1 (a).

model	p	q	$\neg p \vee q$	$\neg p \wedge(\neg p \vee q)$	$p \vee \neg q$	φ_{2}
\boldsymbol{J}	0	0	1	1	1	1
\boldsymbol{x}	0	1	1	1	0	0
\boldsymbol{X}	1	0	0	0	1	0
\boldsymbol{x}	1	1	1	0	1	0

Tabelle 2: Truthtable for Exercise 1 (b).

model	p	q	r	$p \wedge q$	$p \vee r$	φ_{4}
$\boldsymbol{\checkmark}$	0	0	0	0	0	1
$\boldsymbol{\checkmark}$	0	0	1	0	1	1
$\boldsymbol{\checkmark}$	0	1	0	0	0	1
$\boldsymbol{\checkmark}$	0	1	1	0	1	1
$\boldsymbol{\checkmark}$	1	0	0	0	1	1
$\boldsymbol{\checkmark}$	1	0	1	0	1	1
$\boldsymbol{\checkmark}$	1	1	0	1	1	1
$\boldsymbol{\checkmark}$	1	1	1	1	1	1

Tabelle 3: Truthtable for Exercise 1 (d).

Sample Solution

(a)

$$
\begin{aligned}
& (p \rightarrow q) \rightarrow(\neg r \wedge q) \\
& \equiv \neg(\neg p \vee q) \vee(\neg r \wedge q) \quad \text { Definition of }{ }^{\prime} \rightarrow \text { ' } \\
& \equiv(p \wedge \neg q) \vee(\neg r \wedge q) \quad \text { De Morgan } \\
& \equiv((p \wedge \neg q) \vee \neg r) \wedge((p \wedge \neg q) \vee q) \quad \text { Distribution } \\
& \equiv((p \vee \neg r) \wedge(\neg q \vee \neg r)) \wedge((p \vee q) \wedge(\neg q \vee q)) \quad \text { Distribution } \\
& \equiv((p \vee \neg r) \wedge(\neg q \vee \neg r)) \wedge((p \vee q) \wedge 1) \quad \text { Complementation } \\
& \equiv((p \vee \neg r) \wedge(\neg q \vee \neg r)) \wedge(p \vee q) \quad \text { Identity } \\
& \equiv(p \vee \neg r) \wedge(\neg q \vee \neg r) \wedge(p \vee q) \quad \text { Associativity }
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \neg((\neg p \rightarrow \neg q) \wedge \neg r) & & \\
\equiv & \neg((p \vee \neg q) \wedge \neg r) & & \text { Definition of } ' \rightarrow \\
\equiv & \neg(p \vee \neg q) \vee r & & \text { De Morgan } \\
\equiv & (\neg p \wedge q) \vee r & & \text { De Morgan }
\end{aligned}
$$

Exercise 3: Logical Entailment

A knowledge base $K B$ is a set of formulae over a given set of atoms Σ. An interpretation I of Σ is called a model of $K B$, if it is a model for all formulae in $K B$. A knowledge base $K B$ entails a formula φ (we write $K B \models \varphi$), if all models of $K B$ are also models of φ.
Let $K B:=\{p \vee q, \neg r \vee p\}$. Show or disprove that $K B$ logically entails the following formulae.
(a) $\varphi_{1}:=(p \wedge q) \vee \neg(\neg r \vee p)$
(b) $\varphi_{2}:=(q \leftrightarrow r) \rightarrow p$

Sample Solution

(a) $K B$ does not entail φ_{1}. Consider the interpretation $I: p \mapsto 1, q \mapsto 0, r \mapsto 0$. Interpretation I is a model for $K B$ but not for φ_{1}.
(b) Table 4 shows that every model of $K B$ is also a model of φ_{2}, hence $K B \models \varphi_{2}$.

Exercise 4: Inference Rules and Calculi

Let $\varphi_{1}, \ldots, \varphi_{n}, \psi$ be propositional formulae. An inference rule

$$
\frac{\varphi_{1}, \ldots, \varphi_{n}}{\psi}
$$

means that if $\varphi_{1}, \ldots, \varphi_{n}$ are 'considered true', then ψ is 'considered true' as well ($n=0$ is the special case of an axiom). A (propositional) calculus \mathbf{C} is described by a set of inference rules.
Given a formula ψ and knowledge base $K B:=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ (where $\varphi_{1}, \ldots, \varphi_{n}$ are formulae) we write $K B \vdash_{\mathbf{C}} \psi$ if ψ can be derived from $K B$ by starting from a subset of $K B$ and repeatedly applying inference rules from the calculus \mathbf{C} to 'generate' new formulae until ψ is obtained.

model of $K B$	p	q	r	$p \vee q$	$\neg r \vee p$	$q \leftrightarrow r$	φ_{2}	model of φ_{2}
\boldsymbol{X}	0	0	0	0	0	1	0	\boldsymbol{X}
\boldsymbol{x}	0	0	1	0	0	0	1	$\boldsymbol{\checkmark}$
$\boldsymbol{\checkmark}$	0	1	0	1	1	0	1	$\boldsymbol{\checkmark}$
\boldsymbol{x}	0	1	1	1	0	1	0	\boldsymbol{x}
$\boldsymbol{\checkmark}$	1	0	0	1	1	1	1	$\boldsymbol{\checkmark}$
$\boldsymbol{\checkmark}$	1	0	1	1	1	0	1	\checkmark
$\boldsymbol{\checkmark}$	1	1	0	1	1	0	1	\checkmark
$\boldsymbol{\checkmark}$	1	1	1	1	1	1	1	$\boldsymbol{\checkmark}$

Tabelle 4: Truthtable for Exercise 3 (b).

Consider the following two calculi, defined by their inference rules (φ, ψ, χ are arbitrary formulae).

$$
\begin{array}{ll}
\mathbf{C}_{\mathbf{1}}: & \frac{\varphi \rightarrow \psi, \psi \rightarrow \chi}{\varphi \rightarrow \chi}, \frac{\neg \varphi \rightarrow \psi}{\neg \psi \rightarrow \varphi}, \frac{\varphi \leftrightarrow \psi}{\varphi \rightarrow \psi, \psi \rightarrow \varphi} \\
\mathbf{C}_{2}: & \frac{\varphi, \varphi \rightarrow \psi}{\psi}, \frac{\varphi \wedge \psi}{\varphi, \psi}, \frac{(\varphi \wedge \psi) \rightarrow \chi}{\varphi \rightarrow(\psi \rightarrow \chi)}
\end{array}
$$

Using the respective calculus, show the following derivations (document your steps).
(a) $\{p \leftrightarrow \neg r, \neg q \rightarrow r\} \vdash_{\mathbf{C}_{\mathbf{1}}} p \rightarrow q$
(b) $\{p \wedge q, p \rightarrow r,(q \wedge r) \rightarrow s\} \vdash_{\mathbf{C}_{2}} s$

Remark: Inferences of a given calculus are purely syntactical, i.e. rules only apply in their specific form (much like a grammar) and no other logical transformations not given in the calculus are allowed.

Sample Solution

(a) We use $\mathbf{C}_{\mathbf{1}}$ to derive new formulae until we obtain the desired one.

$$
\begin{aligned}
& \neg q \rightarrow r \stackrel{\text { 2nd rule }}{\vdash_{\mathbf{C}_{\mathbf{1}}}} \quad \neg r \rightarrow q \\
& p \leftrightarrow \neg r \stackrel{\text { 3rd rule }}{\stackrel{\vdash}{\mathbf{C}_{\mathbf{1}}}} \quad p \rightarrow \neg r, \neg r \rightarrow p \\
& p \rightarrow \neg r, \neg r \rightarrow q \quad \stackrel{\text { stt rule }}{\vdash_{\mathbf{C}_{\mathbf{1}}}} \quad p \rightarrow q
\end{aligned}
$$

(b) We use $\mathbf{C}_{\mathbf{2}}$ to derive new formulae until we obtain the desired one.

$$
\begin{array}{rcl}
p \wedge q & \stackrel{2 \text { nd rule }}{\vdash} \mathbf{C}_{\mathbf{2}} & p, q \\
p, p \rightarrow r & \stackrel{1 \text { st rule }}{\vdash} \mathbf{C}_{\mathbf{2}} & r \\
(q \wedge r) \rightarrow s & \stackrel{3 \text { rd rule }}{\vdash} \mathbf{C}_{2} & q \rightarrow(r \rightarrow s) \\
q, q \rightarrow(r \rightarrow s) & \stackrel{1 \text { st rule }}{\vdash} & \\
r \mathbf{C}_{2} & r \rightarrow s \\
r, r \rightarrow s & \stackrel{1 \text { st rule }}{\vdash} \mathbf{C}_{\mathbf{2}} & s
\end{array}
$$

Exercise 5: Resolution Calculus

Due to the Contradiction Theorem (cf. lecture) for every knowledge base $K B$ and formula φ it holds

$$
K B \models \varphi \quad \Longleftrightarrow \quad K B \cup\{\neg \varphi\} \models \perp
$$

Remark: \perp is a formula that is unsatisfiable.
In order to show that $K B$ entails φ, we show that $K B \cup\{\neg \varphi\}$ entails a contradiction. A calculus \mathbf{C} is called refutation-complete if for every knowledge base $K B$

$$
K B \models \perp \quad \Longrightarrow \quad K B \vdash_{\mathbf{C}} \perp
$$

Hence, given a refutation-complete calculus \mathbf{C} it suffices to show $K B \cup\{\neg \varphi\} \vdash_{\mathbf{C}} \perp$ to prove $K B \models \varphi$.
The Resolution Calculus \mathbf{R} is a formal way to do a prove by contradiction. It is correct and refutationcomplete ${ }^{1}$ for knowledge bases that are given in Conjunctive Normal Form (CNF). A knowledge base $K B$ is in CNF if it is of the form $K B=\left\{C_{1}, \ldots, C_{n}\right\}$ where its clauses $C_{i}=\left\{L_{i, 1}, \ldots, L_{i, m_{i}}\right\}$ each consist of m_{i} literals $L_{i, j}$.
Remark: $K B$ represents the formula $C_{1} \wedge \ldots \wedge C_{n}$ with $C_{i}=L_{i, 1} \vee \ldots \vee L_{i, m_{i}}$.
The Resolution Calculus has only one inference rule, the resolution rule:

$$
\mathbf{R}: \quad \frac{C_{1} \cup\{L\}, C_{2} \cup\{\neg L\}}{C_{1} \cup C_{2}}
$$

Remark: L is a literal and $C_{1} \cup\{L\}, C_{2} \cup\{\neg L\}$ are clauses in $K B\left(C_{1}, C_{2}\right.$ may be empty). To show $K B \vdash_{\mathbf{R}} \perp$, you need to apply the resolution rule, until you obtain two conflicting one-literal clauses L and $\neg L$. These entail the empty clause (defined as $\square)$, i.e. a contradiction $\left(\{L\},\{\neg L\} \vdash_{\mathbf{R}} \perp\right)$.
(a) We want to show $\{p \wedge q, p \rightarrow r,(q \wedge r) \rightarrow u\} \vDash u$. First convert this problem instance into a form that can be solved via resolution as described above. Document your steps.
(b) Now, use resolution to show $\{p \wedge q, p \rightarrow r,(q \wedge r) \rightarrow u\} \vDash u$.
(c) Consider the sentence "Heads, I win". "Tails, you lose". Design a propositional $K B$ that represents these sentences (create the propositions and rules required). Then use propositional resolution to prove that I always win.

Sample Solution

(a) We transform $\{p \wedge q, p \rightarrow r,(q \wedge r) \rightarrow u\} \vDash u$ into the form $K B \vDash \perp$ where $K B$ is in CNF. The given entailment is equivalent to $\{p \wedge q, p \rightarrow r,(q \wedge r) \rightarrow u, \neg u\} \models \perp$ using the Contradiction Theorem, which we described above. Now we transform the knowledge base into CNF using DeMorgan's rule and distribution among others.

$$
\begin{aligned}
& \{p \wedge q, p \rightarrow r,(q \wedge r) \rightarrow u, \neg u\} \\
\equiv & \{p, q, \neg p \vee r, \neg(q \wedge r) \vee u, \neg u\} \\
\equiv & \{p, q, \neg p \vee r, \neg q \vee \neg r \vee u, \neg u\} \\
\equiv & \{\{p\},\{q\},\{\neg p, r\},\{\neg q, \neg r, u\},\{\neg u\}\}
\end{aligned}
$$

(b) Now we can use the Resolution calculus \mathbf{R} to derive a contradiction (the empty clause \square).

$$
\begin{array}{rll}
\{\neg p, r\},\{p\} & \vdash_{\mathbf{R}} & \{r\} \\
\{\neg q, \neg r, u\},\{r\} & \vdash_{\mathbf{R}} & \{\neg q, u\} \\
\{\neg q, u\},\{\neg u\} & \vdash_{\mathbf{R}} & \{\neg q\} \\
\{\neg q\},\{q\} & \vdash_{\mathbf{R}} & \square
\end{array}
$$

We have a contradiction. Thus, the above entailment is true.

[^0](c) 1) Define the atomic formulae from text above: H : heads $\quad T$: tails $\quad I:$ I win $\quad Y$: You win.
2) Use these to state the rules: $H \rightarrow I$ and $T \rightarrow \neg Y$.
3) We now must specify implicit rules. The formulas above do not yet know that heads and tails are mutually exclusive: $H \otimes T$ and $I \otimes Y(A \otimes B:=(A \vee B) \wedge(\neg A \vee \neg B)$ is the XOR operator $)$.
4) Convert to CNF:
\[

$$
\begin{aligned}
& H \rightarrow I \text { and } T \rightarrow \neg Y \text { and } H \otimes T \text { and } I \otimes Y \\
\equiv & \neg(H \vee I) \wedge(\neg T \vee \neg Y) \wedge(H \vee T) \wedge(\neg H \vee \neg T) \wedge(I \vee Y) \wedge(\neg I \vee \neg Y) \\
\equiv & \{\{\neg H, I\},\{\neg T, \neg Y\},\{H, T\},\{\neg H, \neg T\},\{I, Y\},\{\neg I, \neg Y\}\}
\end{aligned}
$$
\]

5) We want to prove I, hence we add the literal $\{\neg I\}$ to the knowledge base:

$$
\{\{\neg H, I\},\{\neg T, \neg Y\},\{H, T\},\{\neg H, \neg T\},\{I, Y\},\{\neg I, \neg Y\},\{\neg I\}\} .
$$

Now we start resolving clauses:

$$
\begin{array}{rll}
\{\neg T, \neg Y\},\{H, T\} & \vdash_{\mathbf{R}} & \{H, \neg Y\} \\
\{H, \neg Y\},\{\neg H, I\} & \vdash_{\mathbf{R}} & \{I, \neg Y\} \\
\{\neg I\},\{I, \neg Y\} & \vdash_{\mathbf{R}} & \{\neg Y\} \\
\{\neg Y\},\{I, Y\} & \vdash_{\mathbf{R}} & \{I\} \\
\{I\},\{\neg I\} & \vdash_{\mathbf{R}} & \square
\end{array}
$$

Consequently, we have a contradiction. Thus, I is true.

[^0]: ${ }^{1}$ Complete calculi are impractical, since they have too many inference rules. More inference rules make automated proving with a computer significantly more complex. The Resolution Calculus is an appropriate technique to avoid this additional complexity, since it has only one inference rule.

