Theoretical Computer Science - Bridging Course Sample Solution Exercise Sheet 11

Due: Tuesday, 11th of July 2023, 12:00 pm

Exercise 1: Construct Formulae

Let $\mathcal{S}=\langle\{x, y, z\}, \emptyset, \emptyset,\{R\}\rangle$ be a signature. Translate the following sentences of first order formula over \mathcal{S} into idiomatic English. Use $R(x, y)$ as statement ' x is a part of y '.
(a) $\exists x \forall y R(x, y)$.
(b) $\exists y \forall x R(x, y)$.
(c) $\forall x \forall y \exists z(R(x, z) \wedge R(y, z))$

Sample Solution

Note that idiomatic English uses, contains, or denotes expressions that are natural to a native speaker. It does not contain variables. it might be said: A native speaker will then read the formulas as
(a) Something is a part of everything.
(b) Something has everything as a part.
(c) For any two things, there is something of which they are both a part.

Exercise 2: FOL: Is it a model?

Consider the following first order formulae

$$
\begin{aligned}
\varphi_{1} & :=\forall x R(x, x) \\
\varphi_{2} & :=\forall x \forall y R(x, y) \rightarrow(\exists z R(x, z) \wedge R(z, y)) \\
\varphi_{3} & :=\exists x \exists y(\neg R(x, y) \wedge \neg R(y, x))
\end{aligned}
$$

over signature \mathcal{S} where x, y, z are variable symbols and R is a binary predicate. Give an interpretation
(a) I_{1} which is a model of $\varphi_{1} \wedge \varphi_{2}$.
(b) I_{2} which is no model of $\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3}$.
(c) I_{3} which is a model of $\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3}$.

Sample Solution

(a) Pick $I_{1}:=\left\langle\mathbb{R}, \cdot{ }^{I_{1}}\right\rangle$ where $R^{I_{1}}(x, y): \Longleftrightarrow x \leq_{\mathbb{R}} y$.

This is a model because ' $\leq_{\mathbb{R}}$ ' is reflexive, therefore fulfills φ_{1}. Moreover for every $x, y \in \mathbb{R}$ with $x \leq_{\mathbb{R}} y$ we can choose $z:=x$, which fulfills $x \leq_{\mathbb{R}} z \wedge z \leq_{\mathbb{R}} y$. Thus φ_{2} is also satisfied.
(b) Let $U=\{1,2,3,4,5\}$ and $P(U)$ be its power set. Pick $I_{2}:=\left\langle P(U), .^{I}\right\rangle$ where $R^{I_{2}}(x, y): \Longleftrightarrow x \subset y$. This is not a model since it doesn't satisfy φ_{1}, indeed no set is proper subset of itself.
(c) Take two disjoint copies of \mathbb{R} and the standard $\leq_{\mathbb{R}}$ relation on each of them; if x and y are from different copies they are not related in \mathbb{R}. Formally let

$$
I_{3}:=\left\langle\{(a, 1) \mid a \in \mathbb{R}\} \dot{\cup}\{(a, 2) \mid a \in \mathbb{R}\}, \cdot^{I_{3}}\right\rangle
$$

where $R^{I_{3}}((a, g),(b, h)) \Leftrightarrow\left(g=h\right.$ and $\left.a \leq_{\mathbb{R}} b\right)$.
This is a model because $\leq_{\mathbb{R}}$ is reflexive, therefore I_{3} fulfills φ_{1}. Furthermore for every two $x=$ (a, g) and $y=(b, h)$ with $R^{I_{3}}((a, g),(b, h))$, i.e., $g=h$, we can choose $z:=(a, g)$ which fulfills $R^{I_{3}}((a, g),(a, g)) \wedge R^{I_{3}}((a, g),(b, h))$. Thus φ_{2} is also satisfied. φ_{3} is also satisfied, e.g., $(5,1)$ and $(7,2)$ are incomparable, i.e., we have neither $R^{I_{3}}((5,1),(7,2))$ nor $R^{I_{3}}((7,2),(5,1))$

Exercise 3: FOL: Entailment

(3+3+3 Points)
Let φ, ψ be first order formulae over signature \mathcal{S}. Similar to propositional logic, in predicate logic we write $\varphi \models \psi$ if every model of φ is also a model for ψ. We write $\varphi \equiv \psi$ if both $\varphi \models \psi$ and $\psi \models \varphi$. A knowledge base $K B$ is a set of formulae. A model of $K B$ is model for all formulae in $K B$. We write $K B \models \varphi$ if all models of $K B$ are models of φ. Show or disprove the following entailments.
(a) $(\exists x R(x)) \wedge(\exists x P(x)) \wedge(\exists x T(x)) \vDash \exists x(R(x) \wedge P(x) \wedge T(x))$.
(b) $(\forall x \forall y f(x, y) \doteq f(y, x)) \wedge(\forall x f(x, \mathbf{c}) \doteq x) \models \forall x f(\mathbf{c}, x) \doteq x$.
(c) $(\forall x R(x, x)) \wedge(\forall x \forall y R(x, y) \wedge R(y, x) \rightarrow x \doteq y) \wedge(\forall x \forall y \forall z R(x, y) \wedge R(y, z) \rightarrow R(x, z))$
$\vDash \forall x \forall y R(x, y) \vee R(y, x)$.
Hint: Consider order relations. E.g., $a \leq b$ (a less-equal b) and $a \mid b$ (a divides b).

Sample Solution

(a) The stated entailment is false (it holds in the other direction though). In order to disprove it, we give a model for the left side which is not a model for the right side.
Let $I=\left\langle\{a, b\}, .^{I}\right\rangle$ with $R^{I}=\{a\}, P^{I}=\{b\}$, and $T^{I}=\{a\}$. This makes the left side true since there exists an element $x=a$ that makes $R(x)$ and $T(x)$ true and an element $x=b$ that makes $P(x)$ true (Note the brackets around the three \exists quantifiers which mean that the three elements need not necessarily be the same).
However $R(a) \wedge P(a) \wedge T(a)=T \wedge F \wedge T=F$ and $R(b) \wedge P(b) \wedge T(b)=F \wedge T \wedge F=F$ thus the right side is false (there exists no element which makes the three relations' symbols R, P, T true, since we tested all that are in the domain).
(b) The stated entailment holds. We prove this by picking an arbitrary model (!) $I=\left\langle\mathcal{D}, \cdot{ }^{I}\right\rangle$ of the left-hand formula. We show that I is a model for the right-hand formula, too. For that purpose let x be an arbitrary element from \mathcal{D}.
Since I is a model for the left side we already know $f\left(x, \mathbf{c}^{I}\right) \doteq x$. The first condition in the left formula encodes the commutative property. Since \mathbf{c}^{I} is also an element from the domain \mathcal{D} we know $f\left(x, \mathbf{c}^{I}\right)=f\left(\mathbf{c}^{I}, x\right)$ and thus $f\left(\mathbf{c}^{I}, x\right) \doteq x$. Since x was arbitrary we have $\forall x f\left(\mathbf{c}^{I}, x\right) \doteq x$.
(c) The formula on the left side encodes the properties of an order relation. The formula on the right side encodes the property of totality of an order, which means that every element is related to (read: can be compared with) every other element. However, in general an order relation does not need to be total (which is called a partial order).
The hint proposes two order relations, one of which is total over the domain of integers \mathbb{Z}^{*} (either ' $x \leq y$ ' or ' $x \leq y$ ' or both) whereas the other is not (it may happen that neither $x \mid y$ nor $x \mid y$). Thus the logical entailment is false since with \mathbb{Z}^{*} and the 'divides'-relation we have a model of the left-hand formula which is no model of the right-hand one (it is not total).
We formalize this as follows. Let $I=\left\langle\mathbb{Z}^{*}, .{ }^{I}\right\rangle$ with $R^{I}:=\left\{(x, y) \in \mathbb{Z}^{*} \mid x\right.$ divides $\left.y\right\}$. Obviously we have the reflexive property since $x \in \mathbb{Z}^{*}$ divides itself. If $x \in \mathbb{Z}^{*}$ divides $y \in \mathbb{Z}^{*}$ and $y \in \mathbb{Z}^{*}$ divides $z \in \mathbb{Z}^{*}$ then x also divides z which gives us transitivity. Finally, if x divides y and vice versa then y is multiple of x and vice versa which means that the multiplicand must in both cases be 1 , thus both x and y are equal which gives us the antisymmetry property.

This means that I is a model of the left-hand formula. Now consider the two primes $x=2$ and $y=3$. By definition of prime numbers neither of the two can divide the other. Thus $\forall x \forall y R(x, y) \vee$ $R(y, x)$ is false. Therefore I can be no model of the right-hand formula.

