
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
M. Fuchs, G. Schmid

Algorithms and Datastructures

Sample Solution Exercise Sheet 1

Exercise 1: Quicksort (10 Points)

Implement the algorithm QuickSort from the lecture with two different options of how to choose
the pivot element: ”Element at first position”, ”Element at random position”. Use the template
QuickSort.py that is provided on the website. Write a unit test for both the quicksort_divide and
the quicksort_recursive method. The unit tests should check at least one non-trivial example. If
there are critical cases that are easy to check (e.g., an empty input), you should make a unit test for
these cases, too.

Sample Solution

C.f. Quicksort.py in the public folder or on the website.

Exercise 2: Time Measurement (10 Points)

Measure the runtime of your QuickSort implementation for the two variants of choosing the pivot and
for two different kinds of inputs. The first kind of inputs are reversed arrays i.e. arrays of the form
[n, n− 1, . . . , 2, 1], the second kind are arrays filled with n random integers.
Repeat this for input sizes n ∈ {100, 200, . . . , 5000}.1 Plot the runtimes of all 4 variants (pivot, input)
into the same chart.2 Use your plots to compare the runtimes and write a short evaluation into the
file experience.txt (c.f., Task 4).

Sample Solution

Figures 1 and 2 show plots of the running times at different scales. We make the following observations:
Quicksort has a super-linear (quadratic) trend for deterministic pivot choice (first element) and input
array sorted in descending order. Quicksort is much faster (more precisely: Θ(n log n) “with high
probability”, see lecture week 2) for all other variants where the input array or the choice of pivot is
randomized.

1A function to generate the arrays and the time measurements is provided in QuickSort.py
2The differences in runtimes will be most distinct if they are plotted in a single chart with n on the x-axis and the

runtime T (n) on a linear and logarithmic y-axis.



0 1000 2000 3000 4000 5000

0

200

400

600

800

1000

1200 piv_first,arr_rev
piv_rand,arr_rand
piv_rand,arr_rev
piv_first,arr_rand

Figure 1: The first plot shows the runtimes of all requested variants of sorting algorithms for the
respective inputs over the input size n.



0 1000 2000 3000 4000 5000
10 1

100

101

102

103

piv_first,arr_rev
piv_rand,arr_rand
piv_rand,arr_rev
piv_first,arr_rand

Figure 2: The second plot shows the runtimes of all requested variants of sorting algorithms for the
respective inputs over the input size n. The y axis is logarithmic.


