

Exercise 1: \mathcal{O} -notation

Prove or disprove the following statements. Use the set definition of the \mathcal{O} -notation (lecture slides week 2, slides 11 and 12).

(a) $2n^3 + 4n^2 + 7\sqrt{n} \in \mathcal{O}(n^3)$	(1 Point)
(b) $n \cdot \log_3(n) \in \omega(n \cdot \log_5(n))$	(2 Points)
(c) $2^n \in o(n!)$	(2 Points)
(d) $2\log_2(n^2) \in \Omega((\log_2 n)^2)$	(2 Points)

(e) $\max\{f(n), g(n)\} \in \Theta(f(n) + g(n))$ for non-negative functions f and g. (2 Points)

Sample Solution

- (a) True. Choose $n_0 = 1$ and c = 13. For all $n \ge n_0$ we have $n^3 \ge n^2 \ge \sqrt{n}$ and hence $2n^3 + 4n^2 + 7\sqrt{n} \le 13n^3 = cn^3$.
- (b) False. Consider some $c > \frac{1}{\log_5(3)}$. Then for all n we have $n \cdot \log_3(n) = n \cdot \frac{\log_5(n)}{\log_5(3)} < c \cdot n \cdot \log_5(n)$.
- (c) True. For $n \ge 2$ we have

$$(n-1)! = (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \ge 2^{n-2}$$

and hence

 $4(n-1)! \ge 2$

Let c > 0. Choose $n_0 = \max\left\{2, \left\lceil \frac{4}{c} \right\rceil\right\}$. Then for all $n \ge n_0$ we have

$$2^{n} \le 4(n-1)! \le c \cdot n \cdot (n-1)! = c \cdot n!$$

(d) False. Let c > 0. We have

	$2\log(n^2)$	\geq	$c(\log n)^2$
\Leftrightarrow	$4\log(n)$	\geq	$c(\log n)^2$
\Leftrightarrow	4	\geq	$c\log n$
\Leftrightarrow	$\frac{4}{c}$	\geq	$\log n$
\Leftrightarrow	$16^{\frac{1}{c}}$	\geq	n

So for a given $n_0 \ge 1$ choose $n = \max\{n_0, 16^{\frac{1}{c}}\} + 1$. For this n we have $n > n_0$ but $2\log(n^2) < 1$ $c(\log n)^2$.

(e) True. Choose $n_0 = 1$, $c_1 = \frac{1}{2}$ and $c_2 = 1$. For $n \ge n_0$ we have

$$c_1 \cdot (f(n) + g(n)) \le \max\{f(n), g(n)\} \stackrel{f,g \ge 0}{\le} c_2(f(n) + g(n))$$

(9 Points)

$$4(n-1)! > 2^n$$

Exercise 2: Sorting by asymptotic growth

Sort the following functions by their asymptotic growth. Write $g <_{\mathcal{O}} f$ if $g \in \mathcal{O}(f)$ and $f \notin \mathcal{O}(g)$. Write $g =_{\mathcal{O}} f$ if $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(f)$ (no proof needed).

\sqrt{n}	2^n	n!	$\log(n^3)$
3^n	n^{100}	$\log(\sqrt{n})$	$(\log n)^2$
$\log n$	$10^{100}n$	(n+1)!	$n\log n$
$2^{(n^2)}$	n^n	$\sqrt{\log n}$	$(2^n)^2$

Sample Solution

$$\begin{split} \sqrt{\log n} <_{\mathcal{O}} \log(\sqrt{n}) =_{\mathcal{O}} \log n =_{\mathcal{O}} \log(n^3) <_{\mathcal{O}} (\log n)^2 <_{\mathcal{O}} \sqrt{n} <_{\mathcal{O}} 10^{100} n <_{\mathcal{O}} n \log n \\ <_{\mathcal{O}} n^{100} <_{\mathcal{O}} 2^n <_{\mathcal{O}} 3^n <_{\mathcal{O}} (2^n)^2 <_{\mathcal{O}} n! <_{\mathcal{O}} (n+1)! <_{\mathcal{O}} n^n <_{\mathcal{O}} 2^{(n^2)} \end{split}$$

Exercise 3: Event Scheduling

(7 Points)

There are *n* events e_1, \ldots, e_n , each described by their starting time s_1, \ldots, s_n and their ending times t_1, \ldots, t_n . You can only attend one event at a time and if you started an event, you must attend the entire event. We ignore traveltimes between events. The goal is to attend as many events as possible.

Devise an Algorithm that computes the maximum number of events you can attend. Why is your algorithm correct? What is the asymptotic complexity of the algorithm? Can you devise an algorithm that is $o(n^2)$.

Sample Solution

Algorithm: We first sort the events by their ending times t_1, \ldots, t_n , with t_1 being the event that ends as early as possible. We then greedily pick events from this sequence, that is we start with t_1 and then pick the next event in the sequence, for which the starting time $s_i \ge t_1$. We then repeat this until we can no longer attend any new event.

Correctness: Consider the first event o_1 an optimal solution o_1, \ldots, o_n attends and the solution our algorithm produces a_1, \ldots, a_n . Its ending time t_{o_1} is at least $t_{a_1} = t_1$, since t_1 is the event e_1 with the earliest ending time. So by replacing o_1 with e_1 , the sequence a_1, o_2, \ldots, o_n is still a valid solution. Since $t_{a_1} \leq t_{o_1}$, we have that $s_{o_2} \geq s_{a_2}$. As a result and by the properties of our algorithm, we get $t_{o_2} \geq t_{a_2}$, so we can repeat the same reasoning also to replace o_2 with a_2 , and so on and so forth. At the end we have transformed o_1, \ldots, o_n into a_1, \ldots, a_n , by replacing each event with one other. So the two solutions contain the same number of events.

Runtime: We need to first sort the events, which can be done in time $O(n \cdot \log n)$. Then we need to iterate through the sorted list, where we only consider every element once. We either ignore it, because its starting time is earlier than the last added events ending time, or we add it to the solution sequence. This takes O(n) time. As a result our algorithm runs in time $O(n \cdot \log n) \subset o(n^2)$.