
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
M. Fuchs, G. Schmid

Algorithms and Datastructures

Sample Solution Exercise Sheet 2

Exercise 1: O-notation (9 Points)

Prove or disprove the following statements. Use the set definition of the O-notation (lecture slides
week 2, slides 11 and 12).

(a) 2n3 + 4n2 + 7
√
n ∈ O(n3) (1 Point)

(b) n · log3(n) ∈ ω(n · log5(n)) (2 Points)

(c) 2n ∈ o(n!) (2 Points)

(d) 2 log2
(
n2
)
∈ Ω((log2 n)2) (2 Points)

(e) max{f(n), g(n)} ∈ Θ(f(n) + g(n)) for non-negative functions f and g. (2 Points)

Sample Solution

(a) True. Choose n0 = 1 and c = 13. For all n ≥ n0 we have n3 ≥ n2 ≥
√
n and hence 2n3 + 4n2 +

7
√
n ≤ 13n3 = cn3.

(b) False. Consider some c > 1
log5(3)

. Then for all n we have n · log3(n) = n · log5(n)log5(3)
< c · n · log5(n).

(c) True. For n ≥ 2 we have

(n− 1)! = (n− 1) · (n− 2) · . . . · 2 ≥ 2n−2

and hence
4(n− 1)! ≥ 2n

Let c > 0. Choose n0 = max
{

2,
⌈
4
c

⌉}
. Then for all n ≥ n0 we have

2n ≤ 4(n− 1)! ≤ c · n · (n− 1)! = c · n!

(d) False. Let c > 0. We have

2 log(n2) ≥ c(log n)2

⇔ 4 log(n) ≥ c(log n)2

⇔ 4 ≥ c log n
⇔ 4

c ≥ log n

⇔ 16
1
c ≥ n

So for a given n0 ≥ 1 choose n = max{n0, 16
1
c } + 1. For this n we have n > n0 but 2 log(n2) <

c(log n)2.

(e) True. Choose n0 = 1, c1 = 1
2 and c2 = 1. For n ≥ n0 we have

c1 · (f(n) + g(n)) ≤ max{f(n), g(n)}
f,g≥0
≤ c2(f(n) + g(n))



Exercise 2: Sorting by asymptotic growth (4 Points)

Sort the following functions by their asymptotic growth. Write g <O f if g ∈ O(f) and f /∈ O(g).
Write g =O f if f ∈ O(g) and g ∈ O(f) (no proof needed).

√
n 2n n! log(n3)

3n n100 log(
√
n) (log n)2

log n 10100n (n + 1)! n log n

2(n
2) nn

√
log n (2n)2

Sample Solution

√
log n <O log(

√
n) =O log n =O log(n3) <O (log n)2 <O

√
n <O 10100n <O n log n

<O n100 <O 2n <O 3n <O (2n)2 <O n! <O (n + 1)! <O nn <O 2(n
2)

Exercise 3: Event Scheduling (7 Points)

There are n events e1, . . . , en, each described by their starting time s1, . . . , sn and their ending times
t1, . . . , tn. You can only attend one event at a time and if you started an event, you must attend the
entire event. We ignore traveltimes between events. The goal is to attend as many events as possible.

Devise an Algorithm that computes the maximum number of events you can attend. Why is your
algorithm correct? What is the asymptotic complexity of the algorithm? Can you devise an algorithm
that is o(n2).

Sample Solution

Algorithm: We first sort the events by their ending times t1, . . . , tn, with t1 being the event that
ends as early as possible. We then greedily pick events from this sequence, that is we start with t1
and then pick the next event in the sequence, for which the starting time si ≥ t1. We then repeat this
until we can no longer attend any new event.

Correctness: Consider the first event o1 an optimal solution o1, . . . , on attends and the solution our
algorithm produces a1, . . . , an. Its ending time to1 is at least ta1 = t1, since t1 is the event e1 with the
earliest ending time. So by replacing o1 with e1, the sequence a1, o2, . . . , on is still a valid solution.
Since ta1 ≤ to1 , we have that so2 ≥ sa2 . As a result and by the properties of our algorithm, we get
to2 ≥ ta2 , so we can repeat the same reasoning also to replace o2 with a2, and so on and so forth. At
the end we have transformed o1, . . . , on into a1, . . . , an, by replacing each event with one other. So the
two solutions contain the same number of events.

Runtime: We need to first sort the events, which can be done in time O(n · log n). Then we need
to iterate through the sorted list, where we only consider every element once. We either ignore it,
because its starting time is earlier then the last added events ending time, or we add it to the solution
sequence. This takes O(n) time. As a result our algorithm runs in time O(n · log n) ⊂ o(n2).


