University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn

M. Fuchs, G. Schmid

Algorithms and Datastructures

Sample Solution Exercise Sheet 6

Exercise 1: Minimum Distance between Values (10 Points)

(a) Given an array A that contains n integers. Describe an algorithm that finds indices ¢ # j such
that |A[:] — A[j]| is minimal among all indices. In other words, the algorithm should compute the
entries of A that have the smallest distance. Argue the correctness of your algorithm and show
that it runs in time o(n?). (5 Points)

(b) Now, assume that the n numbers from a) are given in a binary search tree B (instead of in an
array). Again, give an algorithm that finds the two tree nodes u # v such that |val(v) — val(u)| is
minimal. Show the correctness and explain why the runtime is on O(n). (5 Points)

Sample Solution

(a) Algorithm: We first sort the array in time O(nlogn) (e.g. MergeSort). Then we iterate over
the sorted array and always store the k for that |A[k + 1] — A[k]| is minimal. Note that by the
tasks’ definition we have to return the original indices ¢ and j. To archieve that, we modify the
initial array before we sort it, i.e., we replace every element A[k] by the tuple (A[k], k). Sorting by
the first tuple entry let the algorithm work as before, but we have the original indices stored as well.

Correctness: In every sorted array A we have for all k that ... < A[k — 2] < Ak — 1] < A[k] <
Alk+1] < A[k+2] < Thus, the largest element that is smaller than A[k] is A[k—1] (as otherwise
the array wouldn’t be sorted correctly) and with the same reasoning the smallest element larger
than A[k] is A[k + 1]. We therefore do not need to compare A[k] with all entries in the array, just
with its two neighbors. Since our algorithm compares every neighbor in the sorted array we are
guaranteed to find the minimum distance.

Runtime: Sorting takes O(nlogn) time. The iteration and comparisions that follow afterwards
can be done in linear time. Thus, the overall runtime is in O(nlogn) C o(n?).

(b) Here we use the In-Order traversal in binary tress. This one always returns the elements of the
tree in sorted order. Thus, we can act like in above’s task.
Correctness: Follows from the fact that In-Order produces a sorted output and the remaining
argument is as in a).
Runtime: The traversal takes ©(n) time. Since the comparisons (like in a)) also take linear time
the statement of the task is shown.

Exercise 2: (10 Points)

Again, given a binary tree B containing n integers. For a path P = {r,v;,ve,...,b}, from the root
node r to some leaf b, we define its weight by w(P) = > .pval(v). Describe an algorithm that finds
the heaviest path from the root node to some leaf in B, i.e., the path P that maximizes w(P) for all
root-to-leaf path. State that the runtime is in O(n). (10 Points).

Sample Solution

We use the Post-Order traversal. Whenever a node v is visited, both his chilred already got visited.
Whenever we visit a node v, we compute the heaviest path rooted at v. The weight of v is as follows:

Val(v) + U Cflrill%i()f v{w(Pu)}

Correctness: We will proof that every node v knows the heaviest path rooted at v ending at some leaf.
For that, we use induction over the height of the tree rooted at v. When the height is 0, i.e., the tree
has just one node, the heaviest path has weight val(v). Now, assume v has at least one child. Since we
traverse in Poat-order, all children are already visited. By induction hypothesis, we know the heaviest
path rooted at the childrens of v (since the trees rooted at the children are of lower height). Thus, we
can compute the heaviest path of v by taking the heavier child and add val(v), what indeed is done
by our algorithm.

When the algorithm visits root r, we also know the heaviest path in the whole binary tree.

Runtime: The traverls takes linear in n time. While checking the heaver path of the children simply

takes a constant number of checks (since there are at most 2 children). Thus, we overall have a runtime
of O(n).

