
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
M. Fuchs, G. Schmid

Algorithms and Datastructures

Sample Solution Exercise Sheet 7

Exercise 1: Red-Black Trees (10 Points)

(a) Decide for each of the following trees if it is a red-black tree and if not, which property is violated:

8

5

NIL NIL

NIL

9

8

NIL NIL

6

NIL NIL

6

4

NIL NIL

7

NIL NIL

(b) On the following red-black tree, first execute the operation insert(8) and afterwards delete(5).
Draw the resulting tree and document intermediate steps.

6

4

1

NIL 3

NIL NIL

5

NIL NIL

7

NIL 9

NIL NIL

Sample Solution

(a) From left to right:

1) Red-black-tree

2) No red-black-tree, because it is no binary search tree (the root’s right child has a smaller key).

3) No red-black-tree, because the number of black nodes on a path from the root to a leaf is larger
if you go through the left subtree.

(b) We insert a red node with key 8 according to the rule of inserting into binary search trees.



6

4

1

NIL 3

NIL NIL

5

NIL NIL

7

NIL 9

8

NIL NIL

NIL

We are in case 1b from the lecture. We do a right-rotate(9,8),

6

4

1

NIL 3

NIL NIL

5

NIL NIL

7

NIL 8

NIL 9

NIL NIL

a left-rotate(7,8)

6

4

1

NIL 3

NIL NIL

5

NIL NIL

8

7

NIL NIL

9

NIL NIL

and recolor nodes 7 and 8.



6

4

1

NIL 3

NIL NIL

5

NIL NIL

8

7

NIL NIL

9

NIL NIL

Now we execute delete(5). We are in case 2b from the lecture (deleting a black node with two
NIL-children). First we remove node 5 from the tree and color the right NIL-child of node 4
double black to correct the black height.

6

4

1

NIL 3

NIL NIL

NIL

8

7

NIL NIL

9

NIL NIL

We are in case A.2 from the lecture. We do a left-rotate(1,3)

6

4

3

1

NIL NIL

NIL

NIL

8

7

NIL NIL

9

NIL NIL

and recolor nodes 1 and 3.



6

4

3

1

NIL NIL

NIL

NIL

8

7

NIL NIL

9

NIL NIL

Now we are in case A.1. We do a right-rotate(4,3)

6

3

1

NIL NIL

4

NIL NIL

8

7

NIL NIL

9

NIL NIL

and recolor. Finally, the tree looks like this.

6

3

1

NIL NIL

4

NIL NIL

8

7

NIL NIL

9

NIL NIL

Exercise 2: AVL-Trees 1 (10 Points)

An AVL-tree is a binary search tree with the additional property that for each node v, the depth of
its left and its right subtree differ by at most 1.

(a) Show via induction that an AVL-tree of depth d is filled completely up to depth bd2c. (3 Points)

A binary tree is filled completely up to depth d′ if it contains for all x ≤ d′ exactly 2x nodes of
depth x.

1AVL-Trees are not part of the lecture. To solve this exercise the definition given below is sufficient.



(b) Give a recursion relation that describes the minimum number of nodes of an AVL-tree as a function
of d. (3 Points)

(c) Show that an AVL-tree with n nodes has depth O(log n). (4 Points)

You can either use part (a) or part (b).

Sample Solution

(a) Induktion start: Each non-empty tree has a root and is hence completely filled up to depth 0.
Hence the statement is true for d = 0 and d = 1 (as bd/2c = 0 for d = 0 and d = 1).

Induktion step: Assume the statement holds for all AVL-trees up to depth d. We show that it
also holds for AVL-trees of depth d + 1.

Let T be an AVL-tree of depth d + 1 with r as root and T` and Tr as left and right subtree.
One of these subtrees must have depth d (lets say T`). As T is an AVL-tree, it follows that Tr

has depth at least d − 1. By the induction hypothesis, T` is completely filled up to depth bd/2c
and Tr is completely filled up to depth bd−12 c. So both subtrees are completely filled up to depth

bd−12 c = bd+1
2 − 1c = bd+1

2 c − 1 and hence T is filled completely up to depth bd+1
2 c.

(b) Let nd be the minimum number of nodes in an AVL-tree of depth d. As every tree of depth d
has at least d + 1 nodes (as it contains a path of length d), we obtain as base cases n0 = 1 and
n1 = 2. Now let d ≥ 2. An AVL-tree T of depth d consists of a root r, a left subtree T` and a
right subtree Tr. One of them, lets say T`, has depth d− 1 and hence at least nd−1 nodes. As T
is an AVL-tree, it follows that Tr has depth at least d− 2 and hence at least nd−2 nodes. Hence
T has at least nd = nd−1 + nd−2 + 1 nodes.

(c) Using (b): And AVL-tree of depth d is filled completely up to depth bd2c, so T has n ≥ 2b
d
2
c

nodes. We obtain

2b
d
2
c ≤ n

⇐⇒ bd
2
c ≤ log(n)

=⇒ d

2
− 1

2
≤ bd

2
c ≤ log(n)

=⇒ d ≤ 2 log n + 1

=⇒ d ∈ O(log(n)).

Using (c): Similar to the Fibonacci-series we have nd = nd−1 + nd−2 + 1 = 2nd−2 + nd−3 + 2 ≥
2nd−2. This means that increasing the depth by 2 doubles the number of nodes, so the number
of nodes grows exponentially in the depth, or the depth grows logarithmically in the number of
nodes. More formally, we have nd ≥ 2nd−2 ≥ 22nd−4 ≥ · · · ≥ 2bd/2cnd−2bd/2c ≥ 2bd/2cn0 = 2bd/2c.
The rest follows as above.


