University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn

M. Fuchs, G. Schmid

Algorithms and Datastructures

Sample Solution Exercise Sheet 8

Exercise 1: BFS (5 Points)

Given the following undirected graph G:

()
o ()

() ()
g
@

&)

V10

a) Provide G as an adjacency matrix. (2 Points)
b) Provide G as an adjacency list. (2 Points)

c¢) Perform a breadth-first search on G starting from node v;. Write the order in which the nodes are
marked (i.e., colored gray) in the algorithm. To obtain a deterministic result, always add the node
with the smaller index to the FIFO-queue first, that is, v; before v; if i < j. (8 Points)

Sample Solution

a)

vr U2 V3 V4 Vs Ve U7 UV Vg Vo Vi1

O 1. 0 1 0 O 1 0 0 O 0\ v
1 0 1 0 1 0 0O 0O 0 O 0 | v
O 1 0 1 0 O 1 0 O 1 0 | vs
1 0o 1 0o 1 1 0 0 0 O 0 | vq
o 1.0 1 0 1 O O 0 O 0| vs
o o o 1 1 O O 0 o0 O 0 | vg
1 0 1 0 O 0O O 1 0 O 0 | vr
o o o o o O 1 0 1 0 0 | vg
o 0o 0 o O O 0 1 O 1 0 | vy
o o 1 o 0O O 0 o0 1 0 1 | v
o o 0O O O O 0 o0 o0 1 0/ v

b) e vy :vg,v4,v7
® U9 :V1,U3,0U5
® U3 :V2,V4,V7,V10
® Uy :V1,V3,Vs5,V6
® V5 I V2,V4, Vg6
® Vg : V4,Vs
® VU7 IV1,V3,U8
® Vg I VU7,V
® Vg Vg, V10
® V10 : V3, V9, V11

® V11 : V10

Exercise 2: DFS (6 Points)

We define 2 timestamps for each node (as in Slide 29):
e ¢, 1: Time when node v is colored gray by the DFS search
e t,2: Time when node v is colored black by the DF'S search
Additionally, consider the following directed graph G = (V, E) given with
o V = {uy,ug,us,uq,us}
o E = {(u1,u2), (u1,u3), (ug, us), (us, ua), (us, u1), (us, u1), (us, us), (us, us)}
a) Draw G. (2 Points)

b) Write the processing interval [ty 1,1, 2] for each node in G. Similar to part 1c), if multiple nodes
could be visited next by the depth-first search, always choose the one with the smallest index (and
thus we also start with). (2 Points)

c¢) For each edge, indicate whether it is a Tree Edge, Backward Edge, Forward Edge, or Cross
Edge. (2 Points)

a1

u3

Sample Solution

ac) We label a Tree Edge by T', a Backward Edge by B (Backward Edge), a Forward Edge by F' and
a Cross Edge by C'.

b) ® Uy

)

® Uy)

1,8
2,7]
3,6]
o uy:[4,5]
9

= Ot Oy =~ 0o

® us3:

® Us 70]

Exercise 3: Cycle search (9 Points)

a) How many edges m can an undirected connected graph with n nodes have at most? Justify your
answer. (2 Points)

b) Show that every undirected connected graph which contains no cycle! has exactly n — 1 edges
(where n is the number of nodes of the graph). (4 Points)
Hint: You can prove this statement, for example, by induction onn > 1.

c¢) Given an undirected connected graph G = (V, E) with n = |V/|. Provide an algorithm that decides
in O(n) time whether G contains a cycle or not. Specify explicitly in which data structure G should
be given. (3 Points)

Sample Solution

a) A graph has the maximum number of edges when every node is connected to every other node.
This means each node has a degree of n — 1. We now fix an order of the nodes vy, ..., v, and count
the "not yet counted” edges for each. Thus, v; has exactly n—1 edges, vs still has n—2 edges (since
the edge between v; and ve has already been counted), vs has n — 3 edges, and so on. Therefore,
we have:

n—1

. n—1)-n
)

=1

m < Z(n—z) =
i=1

Another approach would be to calculate how many 2-element subsets there are of an n-element

ny __ n! _n(n=1) _ (n-1mn
set. There are exactly (2) i) E Rl S
1A cycle is a path v1,...,vx € V in a graph where there is also an edge between the start and the end node, i.e.,

{v1,vc} € E.

b)

A connected graph without cycles has exactly n — 1 edges. Proof by induction.

Base case: For n = 1 the graph has no edges.

Induction hypothesis: Every such graph with £ <n — 1 nodes has k — 1 edges.

Inductive step: We now show that the hypothesis also holds for a graph G with n nodes. Every
graph G with n nodes can be composed of a node v which is connected to [> 1 disjoint subgraphs
G1,...,G; of G. Since G is acyclic, each of these subgraphs is also acyclic, and the only connection
between two subgraphs is through the node v. Without loss of generality, let us say that G; has
exactly n; nodes (for each of these subgraphs). Since n; < n — 1 for all ¢, it follows from the
induction hypothesis that G; has exactly n; — 1 edges. We can now calculate the number of edges
m in G as follows:

l l l l
m:deg(v)—l—Z(ni—l):l—i—Zni—Zl:Zni:n—l
i=1 i=1

=1 i=1

Here, deg(v) = [, since v is connected to each of the [subgraphs, and 22:1 n; = n — 1 because this
is the sum over all nodes in G excluding v.

This task could theoretically be solved using either depth-first or breadth-first search. Here, we use
breadth-first search and assume that G is given as an adjacency list. We perform the breadth-first
search "normally”, but we also record for each node v the node u from which it was first reached.
This node u is called the parent of v. If v has a marked neighbor that is not its parent, then there
is a cycle in the tree, and we return false. This procedure has the same runtime as breadth-first
search, i.e., O(n +m). If m = O(n?) is, as in task a), then the runtime is obviously too slow.
However, we know from b) that if G is acyclic, it only has n — 1 edges. We can therefore terminate
the procedure after n — 1 steps and return false if there are still unvisited nodes in the FIFO queue.
Thus, the runtime is O(n).

To justify why a cycle is found when node v has an already marked node, say w, as a neighbor:
This would imply that there is a node s from which there is a path to both w and v. The edge
between w and v connects these paths into a cycle.

