
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
M. Fuchs, G. Schmid

Algorithms and Datastructures

Sample Solution Exercise Sheet 8

Exercise 1: BFS (5 Points)

Given the following undirected graph G:

v1

v2

v3

v4

v5

v6

v7

v8

v9 v10 v11

a) Provide G as an adjacency matrix. (2 Points)

b) Provide G as an adjacency list. (2 Points)

c) Perform a breadth-first search on G starting from node v1. Write the order in which the nodes are
marked (i.e., colored gray) in the algorithm. To obtain a deterministic result, always add the node
with the smaller index to the FIFO-queue first, that is, vi before vj if i < j. (3 Points)

Sample Solution

a)
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11



0 1 0 1 0 0 1 0 0 0 0 v1
1 0 1 0 1 0 0 0 0 0 0 v2
0 1 0 1 0 0 1 0 0 1 0 v3
1 0 1 0 1 1 0 0 0 0 0 v4
0 1 0 1 0 1 0 0 0 0 0 v5
0 0 0 1 1 0 0 0 0 0 0 v6
1 0 1 0 0 0 0 1 0 0 0 v7
0 0 0 0 0 0 1 0 1 0 0 v8
0 0 0 0 0 0 0 1 0 1 0 v9
0 0 1 0 0 0 0 0 1 0 1 v10
0 0 0 0 0 0 0 0 0 1 0 v11

b) • v1 : v2, v4, v7

• v2 : v1, v3, v5

• v3 : v2, v4, v7, v10

• v4 : v1, v3, v5, v6

• v5 : v2, v4, v6

• v6 : v4, v5

• v7 : v1, v3, v8

• v8 : v7, v9

• v9 : v8, v10

• v10 : v3, v9, v11

• v11 : v10

c)

v1, 1

v2, 2

v3, 5

v4, 3

v5, 6

v6, 7

v7, 4

v8, 8

v9, 10 v10, 9 v11, 11

Exercise 2: DFS (6 Points)

We define 2 timestamps for each node (as in Slide 29):

• tv,1: Time when node v is colored gray by the DFS search

• tv,2: Time when node v is colored black by the DFS search

Additionally, consider the following directed graph G = (V,E) given with

• V = {u1, u2, u3, u4, u5}

• E = {(u1, u2), (u1, u3), (u2, u3), (u3, u4), (u4, u1), (u5, u1), (u5, u3), (u5, u4)}

a) Draw G. (2 Points)

b) Write the processing interval [tv,1, tv,2] for each node in G. Similar to part 1c), if multiple nodes
could be visited next by the depth-first search, always choose the one with the smallest index (and
thus we also start with u1). (2 Points)

c) For each edge, indicate whether it is a Tree Edge, Backward Edge, Forward Edge, or Cross
Edge. (2 Points)

u1

u2

u3

u4 u5

T

T

F

T

B
C

C

C

Sample Solution

ac) We label a Tree Edge by T , a Backward Edge by B (Backward Edge), a Forward Edge by F and
a Cross Edge by C:.

b) • u1 : [1, 8]

• u2 : [2, 7]

• u3 : [3, 6]

• u4 : [4, 5]

• u5 : [9, 10]

Exercise 3: Cycle search (9 Points)

a) How many edges m can an undirected connected graph with n nodes have at most? Justify your
answer. (2 Points)

b) Show that every undirected connected graph which contains no cycle1 has exactly n − 1 edges
(where n is the number of nodes of the graph). (4 Points)
Hint: You can prove this statement, for example, by induction on n ≥ 1.

c) Given an undirected connected graph G = (V,E) with n = |V |. Provide an algorithm that decides
in O(n) time whether G contains a cycle or not. Specify explicitly in which data structure G should
be given. (3 Points)

Sample Solution

a) A graph has the maximum number of edges when every node is connected to every other node.
This means each node has a degree of n− 1. We now fix an order of the nodes v1, ..., vn and count
the ”not yet counted” edges for each. Thus, v1 has exactly n−1 edges, v2 still has n−2 edges (since
the edge between v1 and v2 has already been counted), v3 has n− 3 edges, and so on. Therefore,
we have:

m ≤
n∑

i=1

(n− i) =

n−1∑
i=1

i =
(n− 1) · n

2

Another approach would be to calculate how many 2-element subsets there are of an n-element
set. There are exactly

(
n
2

)
= n!

2!·(n−2)! =
n·(n−1)

2! = (n−1)·n
2 .

1A cycle is a path v1, . . . , vk ∈ V in a graph where there is also an edge between the start and the end node, i.e.,
{v1, vk} ∈ E.

b) A connected graph without cycles has exactly n− 1 edges. Proof by induction.
Base case: For n = 1 the graph has no edges.
Induction hypothesis: Every such graph with k ≤ n− 1 nodes has k − 1 edges.
Inductive step: We now show that the hypothesis also holds for a graph G with n nodes. Every
graph G with n nodes can be composed of a node v which is connected to l ≥ 1 disjoint subgraphs
G1, ..., Gl of G. Since G is acyclic, each of these subgraphs is also acyclic, and the only connection
between two subgraphs is through the node v. Without loss of generality, let us say that Gi has
exactly ni nodes (for each of these subgraphs). Since ni ≤ n − 1 for all i, it follows from the
induction hypothesis that Gi has exactly ni − 1 edges. We can now calculate the number of edges
m in G as follows:

m = deg(v) +
l∑

i=1

(ni − 1) = l +
l∑

i=1

ni −
l∑

i=1

1 =
l∑

i=1

ni = n− 1

Here, deg(v) = l, since v is connected to each of the l subgraphs, and
∑l

i=1 ni = n− 1 because this
is the sum over all nodes in G excluding v.

c) This task could theoretically be solved using either depth-first or breadth-first search. Here, we use
breadth-first search and assume that G is given as an adjacency list. We perform the breadth-first
search ”normally”, but we also record for each node v the node u from which it was first reached.
This node u is called the parent of v. If v has a marked neighbor that is not its parent, then there
is a cycle in the tree, and we return false. This procedure has the same runtime as breadth-first
search, i.e., O(n + m). If m = O(n2) is, as in task a), then the runtime is obviously too slow.
However, we know from b) that if G is acyclic, it only has n− 1 edges. We can therefore terminate
the procedure after n−1 steps and return false if there are still unvisited nodes in the FIFO queue.
Thus, the runtime is O(n).
To justify why a cycle is found when node v has an already marked node, say w, as a neighbor:
This would imply that there is a node s from which there is a path to both w and v. The edge
between w and v connects these paths into a cycle.

