University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
M. Fuchs, G. Schmid

Algorithms and Datastructures Sample Solution Exercise Sheet 10

Exercise 1: Dijkstra's Algorithm

(10 Points)

In the lecture we saw that the runtime of Dijkstra using Fibonacci heaps is $O(m + n \log n)$. Is this the actual runtime of the algorithm? Maybe our analysis is just not good enough! We will show that the analysis is indeed tight.

- (a) Argue that any algorithm solving SSSP (Single Source Shortest Paths) must spend at least $\Omega(m)$ time. An intuitive explanation is sufficient. (1 Point)
- (b) Proof that the Dijkstra algorithm determines shortest paths in a sorted order. For a source node v and any other two nodes $u \neq w$ then u will be marked before w if d(v,u) < d(v,w). Give a formal proof. (4 Points)
- (c) Proof that Dijkstras Algorithm needs $\Omega(n \log n)$ time if the algorithm is implemented using a comparison based heap. The idea is the following: reduce the problem of sorting n numbers to the SSSP problem. (Given n numbers in an array A create an instance of SSSP.) Give a precise description and a formal proof. (5 Points)

Sample Solution

- (a) Suppose the algorithm ran in $T(m) \in o(m)$ time, then there exists an m_0 such that $T(m_0) \leq \frac{1}{2}m_0^{-1}$. As a result the algorithm will only see half of all edges. Now it is impossible for the algorithm to determine wether the shortest paths could be improved using the unknown edges.
- (b) Dijkstra marks a node u once the correct shortest path to u is computed. This happens exactly when u is removed from the priority queue. So lets suppose v is the source node and $u \neq w$ are two other nodes such that d(v,u) < d(v,w). We will prove that u gets marked first. Since d(v,u) < d(v,w) it follows that $d(v,p_1) \leq \ldots \leq d(v,p_k) < d(v,w)$ for the shortest path $(v=p_0,p_1,\ldots,p_k=u)^2$ Seeing as p_1 is a direct neighbor of v, it will be inserted into the priority queue in the first step. Whenever a p_i gets marked p_{i+1} will immediately be added to the priority queue before another node gets removed from the priority queue. As a result: As long as $p_k = u$ is not marked itself, one of $\{p_1,\ldots,p_k=v\}$ is in the priority queue. Since $d(v,p_1) \leq \ldots \leq d(v,p_k) < d(v,w)$ each of these p_i would be chosen over w and as a result the entire path gets handled before w is considered. This immediately implies that d(v,u) is determined before d(v,w).
- (c) Suppose Dijkstras algorithm runs in time $T_{Dij}(n)$ we will show that we can sort n numbers in time $O(n) + T_{Dij}(n+1)$. First we ensure, that all numbers are ≥ 0 . If there exists a negative number in A, we add $\min\{A[i]\}_{i\in[n]}$ to all numbers to ensure that all numbers are ≥ 0 . Given n positive numbers in an Array A, we generate an instance of SSSP on a star graph. The middle node v will be the source node and to it we attach n nodes v_0, \ldots, v_{n-1} . The weight of the edge $\{v, v_i\}$ will be exactly A[i]. Refer to Figure 1 for a visualisation. Clearly the shortest

¹This is a direct consequence of the o(m) definition

²By optimality of subpaths from the lecture.

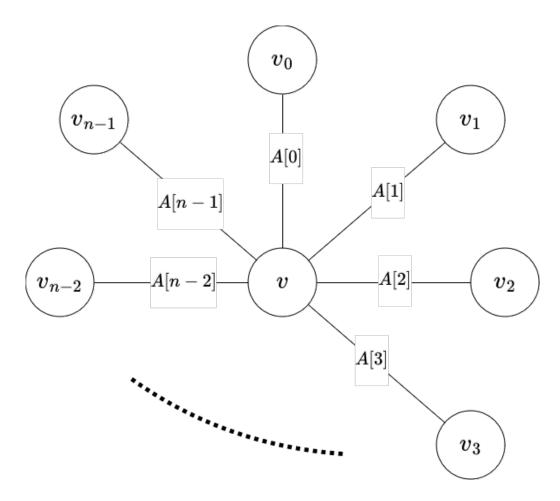


Figure 1: Die Konstruktion um das Sortieren von n Zahlen als SSSP Instanz zu lösen.

path from v to any v_i is to use the edge $\{v, v_i\}$ so $d(v, v_i) = A[i]$. Now we simply use the order in which the nodes are marked as the sorted order of the n numbers A[i], by exercise b) this is a correct sorted order. If we initially added $\min\{A[i]\}_{i\in[n]}$, then we need to substract it again from every element of the sorted order.

The SSSP Instance has n + 1 nodes and can be created in O(n) time since it contains only n edges. Writing back the sorted values into A requires at most O(n) extra time, so in total we have $O(n) + T_{Dij}(n + 1)$ time spent.

Now suppose that $T_{Dij}(n) \in o(n \log n)$ then the above construction gives a comaprison based sorting algorithm in $o(n \log n)$ contradicting the comparison based sorting lowerbound of $\Omega(n \log n)$. Therefore $T_{Dij}(n) \in \Omega(n \log n)$ as claimed.

Exercise 2: Currency Exchange

(10 Points)

Consider n currencies w_1, \ldots, w_n . The exchange rates are given in an $n \times n$ -matrix A with entries a_{ij} $(i, j \in \{1, \ldots, n\})$. Entry a_{ij} is the exchange rate from w_i to w_j , i.e., for one unit of w_i one gets a_{ij} units of w_j .

Given a currency w_{i_0} , we want to find out whether there is a sequence i_0, i_1, \ldots, i_k such that we make profit if we exchange one unit of w_{i_0} to w_{i_1} , then to w_{i_2} etc. until w_{i_k} and then back to w_{i_0} .

- (a) Translate this problem to a graph problem. That is, define a graph and a property which the graph fulfills if and only if there is a sequence of currencies as described above. (4 Points)
- (b) Give an algorithm that decides in $\mathcal{O}(n^3)$ time steps whether there is a sequence of currencies as described above. Explain the correctness and runtime. (6 Points)

Hint: It is $a \cdot b > 1 \iff -\log a - \log b < 0$

Sample Solution

(a) We define a weighted graph G = (V, E, w) with $V = \{1, ..., n\}$, $E = V^2$ (i.e., the graph is directed and complete) and $w(i, j) = a_{ij}$ (i.e., A is the adjacency matrix). A sequence of currencies as described exists if and only if there is a cycle $(i_0, i_1, ..., i_k, i_0)$ such that

$$\prod_{j=0}^{k-1} w(i_j, i_{j+1}) \cdot w(i_k, i_0) > 1 . \tag{1}$$

(b) In the adjacency matrix, we replace a_{ij} by $-\log a_{ij}$. That is, we define a graph G = (V, E, w') with V and E as before and $w'(i, j) = -\log w(i, j)$. We run Bellman-Ford on G' with source i_0 . This algorithm checks if G' contains a negative cycle, i.e., nodes i_0, \ldots, i_k with

$$\sum_{j=0}^{k-1} w'(i_j, i_{j+1}) + w'(i_k, i_0) < 0$$

$$\iff \sum_{j=0}^{k-1} -\log w(i_j, i_{j+1}) - \log w(i_k, i_0) < 0$$

$$\iff \sum_{j=0}^{k-1} \log w(i_j, i_{j+1}) + \log w(i_k, i_0) > 0$$

$$\iff \log \left(\prod_{j=0}^{k-1} w(i_j, i_{j+1}) \cdot w(i_k, i_0) \right) > 0$$

$$\iff \prod_{j=0}^{k-1} w(i_j, i_{j+1}) \cdot w(i_k, i_0) > 1.$$

So the algorithm checks property (1) from part (a). The runtime of Bellman-Ford is $\mathcal{O}(|V| \cdot |E|)$. With |V| = n and $|E| = n^2$ we obtain a runtime of $\mathcal{O}(n^3)$.