
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
M. Fuchs, Z. Parsaeian

Theory of Distributed Systems

Sample Solution Exercise Sheet 12

Exercise 1: Selfish Caching

For each of the following caching networks, compute the social optimum, the pure Nash equilibria,
the price of anarchy (PoA) as well as the optimistic price of anarchy (OPoA):

1. du = dv = dw = dx = 1,

2. The demand is written next to each node.

Sample Solution

To be sure that we find every Nash equilibrium, we explicitly write down every best response.

1. Best-response strategies:

u : cache only if nobody else does. (B1)

v : cache if neither u nor x cache. (B2)

w : cache unless u caches. (B3)

x : cache if neither u nor v cache. (B4)

Nash equilibrium. If we assume that u plays Yu = 1 (i.e. caches), the system can only be in a
NE if Yv = Yw = Yx = 0 due to (B1). Since for all v, w, x it is then a best response not to cache,
(1, 0, 0, 0) is a Nash equilibrium. If instead Yu = 0, then (B3) implies Yw = 1.

• If Yv = 1, (B2) forces Yx = 0, yielding (0, 1, 1, 0).

• If Yv = 0, (B2) forces Yx = 1, yielding (0, 0, 1, 1).



Hence
NE = {(1, 0, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1)}.

Price of Anarchy. The social optimum is achieved at (1, 0, 0, 0):

OPT = cost(1, 0, 0, 0) = 1 + 1
2 + 3

8 + 3
4 = 21

8 .

Since (1, 0, 0, 0) is itself a NE, the optimistic PoA is

OPoA =
minNE cost

OPT
= 1.

The worst-case PoA comes from (0, 1, 1, 0):

PoA =
cost(0, 1, 1, 0)

OPT
=

1
2 + 1 + 1 + 7

8
21
8

=
9/8

21/8
= 9

7 ≈ 1.286.

2. Best-response strategies:

u : cache only if nobody else does. (B1)

v : cache unless u caches. (B2)

w : cache unless x caches. (B3)

x : cache if neither u nor w cache. (B4)

Nash equilibrium. If we assume that u plays Yu = 1 (i.e. u caches) the system can only be
in a NE if Yv = Yw = Yx = 0 due to (B1). However, Yx = 0 implies Yw = 1 by (B3), so there
can be no NE with Yu = 1. Thus in any NE we must have Yu = 0, and hence Yv = 1 by (B2).

• If Yw = 1, then (B3) implies Yx = 0. This does not violate (B4), and so (Yu, Yv, Yw, Yx) =
(0, 1, 1, 0) is a Nash equilibrium.

• If Yw = 0, then (B4) implies Yx = 1, and so (0, 1, 0, 1) is also a Nash equilibrium.

Price of anarchy. The social optimum is achieved at (0, 1, 1, 0), namely

OPT = cost(0110) = 1
3 · 0.2 + 1 + 1 + 1

2 · 0.2 = 2.16.

Since (0110) is also a NE, the optimistic price of anarchy is 1. The worst-case price of anarchy
is

PoA =
cost(0101)

OPT
=

1
3 · 0.2 + 1 + 0.2 + 1

2.16
=

68

65
≈ 1.046.

Exercise 2: Selfish Caching with variable caching cost

The selfish caching model introduced in the lecture assumed that every peer incurs the same caching
cost. However, this is a simplification of reality: a peer with little storage space could experience a
much higher caching cost than a peer who has terabytes of free disk space. In this exercise, we omit
the simplifying assumption and allow variable caching costs αi for node i.
What are the Nash equilibria in the following caching networks given that

1. αu = 1, αv = 2, αw = 2 ?

2. αu = 3, αv = 3
2 , αw = 3 ?

Does any of the above instances admit a dominant-strategy profile? What is the Price of Anarchy in
each case?



Sample Solution

We define Di = { j : ci←j < αi} as the set of nodes that “cover” node i. A profile Y ∈ {0, 1}3 is a
Nash equilibrium if and only if for each node i:

• If Yi = 1 then Yj = 0 for all j ∈ Di.

• If Yi = 0 then there exists j ∈ Di with Yj = 1.

1. Du = ∅, Dv = {u,w}, Dw = {u}.

Du = ∅ forces Yu = 1.

• Then Yv = 0, and hence Yw = 1.

Thus
NE = {(1, 0, 1)},

which is also the social optimum, so PoA = 1.

2. Du = {v}, Dv = {u}, Dw = {u, v}. Case-by-case:

• If Yu = 1, then Yv = Yw = 0, giving profile (1, 0, 0).

• If Yu = 0, then Yv = 1, which forces Yw = 0, giving (0, 1, 0).

Hence
NE = {(1, 0, 0), (0, 1, 0)}.

Their costs are

cost(1, 0, 0) = 3 + 1 +
8

3
, cost(0, 1, 0) =

3

2
+

3

2
+

5

3
,

so

PoA =
max{cost(1, 0, 0), cost(0, 1, 0)}
min{cost(1, 0, 0), cost(0, 1, 0)}

=
40
3
28
3

=
40

28
≈ 1.43.

Dominant strategies Every dominant strategy profile is also a Nash equilibrium. Hence we only
have to check the computed NEs to see whether they consist solely of dominant strategies.
Let us consider game (1). Since every dominant strategy profile is also a Nash equilibrium, it suffices
to look at the NE. The game has no dominant strategy profile. In particular, profile (101) is not a
dominant strategy profile in game 1: although Yu = 1 is the dominant strategy for u, the choices
Yv = 0 and Yw = 1 are not dominant for v and w. (Indeed, if Yv = 1, then the best response of w
would be Yw = 0.) Game 2: Since the decision of node u whether to cache depends on the decision
of node v, it is not a dominant strategy. Therefore this game also has no dominant strategy profile.

Exercise 3: Matching Pennies

Tobias and Stephan like to gamble, and came up with the following game: Each of them secretly turns
a penny to heads or tails. Then they reveal their choices simultaneously. If the pennies match Tobias
gets both pennies, otherwise Stephan gets them.
Write down this 2-player game as a bi-matrix, and compute its (mixed) Nash equilibria!



Sample Solution

The bi-matrix of the zero-sum game with Tobias (row) and Stephan (column) is

H T

H (+1, −1) (−1, +1)
T (−1, +1) (+1, −1)

There is no pure-strategy Nash equilibrium. Let Tobias play H with probability p and T with 1− p,
and Stephan play H with probability q and T with 1− q. Their expected payoffs are

ΓT (p, q) = p
(
q · (+1) + (1− q) · (−1)

)
+ (1− p)

(
q · (−1) + (1− q) · (+1)

)
= (q − (1− q)) p+

(
−(q − (1− q))

)
(1− p)

= (2q − 1) p− (2q − 1)(1− p) = (4q − 2) p+ 1− 2q,

ΓS(p, q) = q
(
p · (−1) + (1− p) · (+1)

)
+ (1− q)

(
p · (+1) + (1− p) · (−1)

)
= (−(p− (1− p))) q + (p− (1− p))(1− q)

= (2p− 1)(1− q)− (2p− 1) q = (2− 4p) q + 2p− 1.

For Stephan, ΓS(p, q) is constant in q exactly when p = 1
2 ; for Tobias, ΓT (p, q) is constant in p exactly

when q = 1
2 . Thus the unique mixed-strategy Nash equilibrium is

(p∗, q∗) =
(
1
2 ,

1
2

)
.


