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Exercise 1: Schedules

Consider three nodes, v1, v2, and v3, which are connected via FIFO channels, that is, messages between
any two nodes are received in the same order they are sent. For example, if node v1 sends first message
m1 then m2 to node v2, then v2 will first receive m1 and then m2.
Devise one possible schedule S which is consistent with the following local restrictions to the three
nodes.

• S|1 = s1,3 s1,3 r1,2 r1,3 s1,2 r1,2 s1,3,

• S|2 = s2,3 s2,1 r2,1 s2,1,

• S|3 = r3,2 r3,1 s3,1 r3,1 r3,1.

si,j denotes the send event from node i to node j and rj,i denotes the event that node j receives a
message from node i.

Sample Solution

There could be more than one possible global schedule S. Two possible ones are the following.

s2,3 s1,3 r3,2 r3,1 s2,1 s1,3 s3,1 r1,2 r1,3 r3,1 s1,2 r2,1 s2,1 r1,2 s1,3 r3,1.

s1,3 s2,3 r3,2 r3,1 s1,3 s2,1 s3,1 r3,1 r1,2 r1,3 s1,2 r2,1 s2,1 r1,2 s1,3 r3,1.

One can also get a possible solution by drawing the graphical diagram as in the lecture.

Exercise 2: The Level Algorithm

Consider the following algorithm between two connected nodes u and v:

The two nodes maintain levels ℓu and ℓv, which are both initialized to 0. One round of the algorithm
works as follows:

1. Both nodes send their current level to each other

2. If u receives level ℓv from v, u updates its level to ℓu := max{ℓu, ℓv+1}. If the message to node u
is lost, node u does not change its level ℓu. Node v updates its level ℓv in the same (symmetric)
way.

If the level algorithm runs for r rounds:

(a) What can you say about the level of the two nodes?

(b) If all messages succeed, what can you say about the level of the two nodes?

(c) In what case the level of a node is at least one?



Sample Solution

a) We argue by induction on the number of rounds r that : after r rounds, the two levels differ by
at most one. For a round r, let ℓru and ℓrv be the levels of nodes u and v after round r. We have
that r ≥ 0. So for the base case: for r = 0 we have that ℓ0u = 0 = ℓ0v . For the inductive step:
assume that the statement holds after round r i.e. , we have |ℓru − ℓrv| ≤ 1, which is equivalent to
ℓrv − 1 ≤ ℓru ≤ ℓrv + 1. We have

ℓr+1
u ≤ max{ℓru, ℓrv + 1} I.H.

= ℓrv + 1 ≤ ℓr+1
v + 1

where the last inequation holds because levels can only increase.

Analogously, we prove ℓr+1
v ≤ ℓr+1

u + 1.

b) Induction on the number of rounds: At the beginning (after round 0), we have ℓ0u = ℓ0v = 0. Now
assume ℓru = ℓrv = r and in round r both messages succeed. Then ℓr+1

u = max{ℓru, ℓrv + 1} =
max{r, r + 1} = r + 1 and ℓr+1

v = max{ℓrv, ℓru + 1} = r + 1.

c) For the forward direction: if a node never receives a message, it never updates its level (which is
initially 0). So if its level is at least one, then it must have received a message.
For the backward direction: if node u receives ℓv ≥ 0 in some round, then its level becomes
ℓv + 1 ≥ 1 which never decreases again.

Exercise 3: The Randomized Two Generals Algorithm

Now assume we have two nodes u and v running the following modified protocol:

• Each node has an input xu, xv ∈ {0, 1}.

• Node u picks a random number R ∈ {1, . . . , r} uniformly at random.

• The nodes run the Level Algorithm (as in Exercise 2) for r rounds (In each message, both
nodes also include their inputs and node u also includes the value of R.).

• At the end, a node outputs 1 if:

– It knows that both inputs are 1,

– It knows the value of R,

– Its own level is at least R.

• Otherwise, it outputs 0.

If the level algorithm runs for r rounds:

(a) If at least one input is 0, what is the output of the two nodes?

(b) If both inputs are 1:

• what is the output if no message is lost?

• under what circumstances the output of the two nodes is not the same value?

(c) If both inputs are 1, what is the probability that both nodes output the same value?

(d) Using the same technique as in the impossibility proof for the deterministic Two Generals Problem
(discussed in the lecture), prove a lower bound for the error probability.



Sample Solution

Throughout the solution let r ∈ N be the number of rounds and let R ∈ {1, . . . , r} be the random
number chosen by node u. Denote by ℓu, ℓv ∈ {0, . . . , r} the (deterministic) final level obtained by the
Level Algorithm at u and v, respectively.

(a) At least one input is 0. Assume without loss of generality that the input of node u is 0. Since
u knows its own input, it will deterministically output 0 regardless of the communication pattern. We
now consider the behavior of nodev.
If no message is delivered from u to v, then v does not learn the value of R, violating the second
output condition. Hence, v outputs 0.
If at least one message from u is delivered to v, then v learns that the input of u is 0 (as every message
includes the sender’s input). Consequently, the first output condition (“both inputs are 1”) is violated.
Hence, v also outputs 0.
In both cases, the nodes agree and output 0.

(b) Both inputs are 1.

(i) No message is lost. When all r messages of every round are delivered: after round t both nodes
have learned the other’s level t− 1 and therefore increase their own level to t. Thus ℓu = ℓv = r.
Node v receives R in the very first message, so it also knows R. Every node therefore fulfils the
three output conditions and the common output is 1.

(ii) When can the outputs differ? Based on the output of level algorithm, the only possible gap is
ℓu = ℓv +1. Let L := min{ℓu, ℓv}. If R ≤ L then both nodes satisfy “level ≥ R” and output 1; if
R > L+ 1 then neither node satisfies it and both output 0. Hence disagreement can occur only
when

R = L+ 1 = ℓu = ℓv + 1.

In other words, exactly one more round was successfully acknowledged by u than by v, and the
random counter happens to hit this delicate level. In this case u outputs 1 and v outputs 0.

(c) Probability of agreement when both inputs are 1. Fix an arbitrary loss pattern. After
the r rounds each node has a deterministic level ℓu, ℓv with the property |ℓu− ℓv| ≤ 1. Conditional on
the loss pattern the random variable R is still uniformly distributed in {1, . . . , r}. The nodes disagree
exactly if R = ℓu and ℓu = ℓv + 1 (the situation described above). Whatever the values of ℓu, ℓv are,
at most

Pr[disagreement | pattern] ≤ 1

r
.

Taking the expectation over all loss patterns gives

Pr[disagreement] ≤ 1

r
, so Pr[agreement] ≥ 1− 1

r .

(d) A lower bound on the error probability. We prove a lower bound on the error probability
by constructing an indistinguishability sequence in which messages are gradually removed, and we
track the cumulative probability of an incorrect output. This mirrors the classical Two Generals
impossibility argument, adapted to the randomized setting.
Assume both nodes u and v have input 1. Let the protocol run for r rounds. We define a sequence of
executions E0, E1, . . . , E2r, where in each step we remove one message (either from u to v or from v to
u), starting from the case with full delivery:

• E0: All 2r messages (in both directions) are delivered. In this case, both nodes should output 1
with probability at least 1− ε.

• In E1: The last message from u to v is lost. Since this changes only v’s view, the probability
that v outputs 0 increases by at most ε.



• In E2: The last message from v to u is also lost. Now u’s view may be affected, so the probability
that either node outputs 0 increases to at most 2ε.

• ...

• In general, after t message losses (i.e., in Et), the probability that at least one node outputs 0 is
at most t · ε.

• Finally, in E2r: All messages are lost. In this case, node v receives nothing and cannot distinguish
this execution from one where u’s input is 0. Hence, v must output 0 with probability 1.

So, starting from E0 (where both nodes output 1 with high probability) and gradually dropping
messages until E2r (where at least one node must output 0 with probability 1), the total cumulative
change in output must be at least 1.
Thus, we conclude:

2r · ε ≥ 1 ⇒ ε ≥ 1

2r
.

This proves that every r-round randomized protocol has worst-case error at least 1/(2r). The ran-
domized protocol analyzed in parts (a)–(c) achieves error at most 1/r, so it is asymptotically optimal
up to a constant factor.


