

Theory of Distributed Systems Exercise Sheet 1

Exercise 1: Schedules

Consider three nodes, v_1 , v_2 , and v_3 , which are connected via FIFO channels, that is, messages between any two nodes are received in the same order they are sent. For example, if node v_1 sends first message m_1 then m_2 to node v_2 , then v_2 will first receive m_1 and then m_2 .

Devise **one** possible schedule S which is consistent with the following local restrictions to the three nodes.

- $S|1 = s_{1,3} \ s_{1,3} \ r_{1,2} \ r_{1,3} \ s_{1,2} \ r_{1,2} \ s_{1,3}$,
- $S|_2 = s_{2,3} \ s_{2,1} \ r_{2,1} \ s_{2,1}$,
- $S|3 = r_{3,2} r_{3,1} s_{3,1} r_{3,1} r_{3,1}$.

 $s_{i,j}$ denotes the send event from node *i* to node *j* and $r_{j,i}$ denotes the event that node *j* receives a message from node *i*.

Exercise 2: The Level Algorithm

Consider the following algorithm between two connected nodes u and v:

The two nodes maintain levels ℓ_u and ℓ_v , which are both initialized to 0. One round of the algorithm works as follows:

- 1. Both nodes send their current level to each other
- 2. If u receives level ℓ_v from v, u updates its level to $\ell_u := \max\{\ell_u, \ell_v + 1\}$. If the message to node u is lost, node u does not change its level ℓ_u . Node v updates its level ℓ_v in the same (symmetric) way.

If the level algorithm runs for r rounds:

- (a) What can you say about the level of the two nodes?
- (b) If all messages succeed, what can you say about the level of the two nodes?
- (c) In what case the level of a node is at least one?

Exercise 3: The Randomized Two Generals Algorithm

Now assume we have two nodes u and v running the following modified protocol:

- Each node has an input $x_u, x_v \in \{0, 1\}$.
- Node u picks a random number $R \in \{1, \ldots, r\}$ uniformly at random.

- The nodes run the Level Algorithm (as in Exercise 2) for r rounds (In each message, both nodes also include their inputs and node u also includes the value of R.).
- At the end, a node outputs 1 if:
 - It knows that both inputs are 1,
 - It knows the value of R,
 - Its own level is at least R.
- Otherwise, it outputs 0.

If the level algorithm runs for r rounds:

- (a) If at least one input is 0, what is the output of the two nodes?
- (b) If both inputs are 1:
 - what is the output if no message is lost?
 - under what circumstances the output of the two nodes is not the same value?
- (c) If both inputs are 1, what is the probability that both nodes output the same value?
- (d) Using the same technique as in the impossibility proof for the deterministic Two Generals Problem (discussed in the lecture), prove a lower bound for the error probability.