

Theoretical Computer Science - Bridging Course Exercise Sheet 10

Due: Tuesday, 8th of July 2025, 12:00 pm

Exercise 1: Propositional Logic: Basic Terms $(1+1+1+1 \ Points)$

Let $\Sigma := \{p, q, r\}$ be a set of atoms. An interpretation $I : \Sigma \to \{T, F\}$ maps every atom to either true or false. Inductively, an interpretation I can be extended to composite formulae φ over Σ (cf. lecture). We write $I \models \varphi$ if φ evaluates to T (true) under I. In case $I \models \varphi$, I is called a *model* for φ .

For each of the following formulae, give *all* interpretations which are models. Make a truth table and/or use logical equivalencies to find all models (document your steps). Which of these formulae are satisfiable, which are unsatisfiable and which are tautologies?

- (a) $\varphi_1 = (p \land \neg q) \lor (\neg p \lor q)$
- (b) $\varphi_2 = (\neg p \land (\neg p \lor q)) \leftrightarrow (p \lor \neg q)$
- (c) $\varphi_3 = (p \land \neg q) \rightarrow \neg (p \land q)$
- (d) $\varphi_4 = (p \land q) \rightarrow (p \lor r)$

Remark: $a \to b :\equiv \neg a \lor b$, $a \leftrightarrow b :\equiv (a \to b) \land (b \to a)$, $a \not\to b :\equiv \neg (a \to b)$.

Exercise 2: CNF and DNF

(2+2 Points)

- (a) Convert $\varphi_1 := (p \to q) \to (\neg r \land q)$ into Conjunctive Normal Form (CNF).
- (b) Convert $\varphi_2 := \neg((\neg p \to \neg q) \land \neg r)$ into Disjunctive Normal Form (DNF).

Remark: Use the known logical equivalencies given in the lecture slides to do the necessary transformations. State which equivalency you are using in each step.

Exercise 3: Logical Entailment

(3+3 Points)

A knowledge base KB is a set of formulae over a given set of atoms Σ . An interpretation I of Σ is called a model of KB, if it is a model for all formulae in KB. A knowledge base KB entails a formula φ (we write $KB \models \varphi$), if all models of KB are also models of φ .

Let $KB := \{p \lor q, \neg r \lor p\}$. Show or disprove that KB logically entails the following formulae.

- (a) $\varphi_1 := (p \wedge q) \vee \neg (\neg r \vee p)$
- (b) $\varphi_2 := (q \leftrightarrow r) \to p$

Exercise 4: Inference Rules and Calculi

(3+3 Points)

Let $\varphi_1, \ldots, \varphi_n, \psi$ be propositional formulae. An inference rule

$$\frac{\varphi_1,\ldots,\varphi_n}{\psi}$$

means that if $\varphi_1, \ldots, \varphi_n$ are 'considered true', then ψ is 'considered true' as well (n = 0) is the special case of an axiom). A (propositional) calculus \mathbf{C} is described by a set of inference rules.

Given a formula ψ and knowledge base $KB := \{\varphi_1, \dots, \varphi_n\}$ (where $\varphi_1, \dots, \varphi_n$ are formulae) we write $KB \vdash_{\mathbf{C}} \psi$ if ψ can be derived from KB by starting from a subset of KB and repeatedly applying inference rules from the calculus \mathbf{C} to 'generate' new formulae until ψ is obtained.

Consider the following two calculi, defined by their inference rules (φ, ψ, χ) are arbitrary formulae).

$$\mathbf{C_1}: \quad \frac{\varphi \to \psi, \psi \to \chi}{\varphi \to \chi}, \frac{\neg \varphi \to \psi}{\neg \psi \to \varphi}, \frac{\varphi \leftrightarrow \psi}{\varphi \to \psi, \psi \to \varphi}$$

$$\mathbf{C_2}: \quad \frac{\varphi, \varphi \to \psi}{\psi}, \frac{\varphi \land \psi}{\varphi, \psi}, \frac{(\varphi \land \psi) \to \chi}{\varphi \to (\psi \to \chi)}$$

Using the respective calculus, show the following derivations (document your steps).

(a)
$$\{p \leftrightarrow \neg r, \neg q \to r\} \vdash_{\mathbf{C}_1} p \to q$$

(b)
$$\{p \land q, p \rightarrow r, (q \land r) \rightarrow s\} \vdash_{\mathbf{C_2}} s$$

Remark: Inferences of a given calculus are purely syntactical, i.e. rules only apply in their specific form (much like a grammar) and no other logical transformations not given in the calculus are allowed.