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Task 1: Basic Mathematical Skills (9 Points)

1. Prove the equation
∑n

i=1(i− 1/2) = n2

2
for all n ∈ N by induction on n. (5 Points)

2. Let A,B,C be sets. Prove the following implication: (4 Points)

A ∩ C = ∅ =⇒ (B \ A) ∩ C = B ∩ C.

Remark: A \ B := A ∩ B is the ’set minus’ operator, describing all elements of A that
are not in B.

Sample Solution

1. Induction base: The statement is true for n = 1, since
∑1

i=1 i − 1/2 = 1/2 = 12

2
.

(1 Points)

Induction hypothesis: Presume the statement holds for an arbitrary, fixed n ∈ N.

Induction step:
∑n+1

i=1 i − 1/2 = n + 1 − 1/2 +
∑n

i=1 i − 1/2
Ind. hyp.

= n + 1/2 + n2

2
=

n+ 1/2 + (n+1)2−2n−1
2

= (n+1)2

2
. (4 Points)

2. Let A ∩ C = ∅. We show both inclusions. ⊆: Let x ∈ (B \ A) ∩ C. Then x is obviously
also contained in B ∩ C.

⊇: Let x ∈ B ∩ C. Then x ∈ C and due to A ∩ C = ∅ it is not contained in A. From
x ∈ B and x /∈ A we deduce that x ∈ (B \ A). That is x ∈ (B \ A) ∩ C.
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Task 2: DFAs, NFAs (23 Points)

1. Consider the following languages over the alphabet Σ = {a, b}. Let L′ be the language
defined by the regular expression (aa)∗(bb)∗ ∪ b. Let L = Σ∗ \ L′.

(a) What is the shortest word in the language L? (2 Points)

(b) Draw a DFA for language L′. (6 Points)
Remark: You get partial points if you draw an automaton for the language defined
by the regular expression (aa)∗(bb)∗.

(c) Draw a DFA for language L or explain how to modify the DFA for L′ to obtain a
DFA for L. (4 Points)

2. Let S be the language consisting of all words of the form w1w2w3 with w1, w2, w3 ∈
{a, b, c}∗ and

• w1 contains no a’s, and
• w2 contains no b’s and no c’s and an even number of a’s, and
• w3 contains no b’s and no c’s.

Give a regular expression that generates S and uses at most three letters of Σ. Here a
letter is counted more than once if it occurs more than once in the regular expression, e.g.,
the expression aa(bbb)∗ca uses 7 letters, three times the letters a, three times the letters b
and once the letter c. (4 Points)

3. State the difference between deterministic and non-deterministic finite automatons.
Which one (DFA or NFA) can recognize the larger class of languages? (2 Points)

4. Let T := {ancbn+2 | n ≥ 0}. Either prove that T is regular by giving the corresponding
DFA or prove that T is not regular. (5 Points)

Sample Solution

1. (a) As ε and b are not contained in L the shortest word in L is a.
(b)

start

G

a

b

a

b

a

b

b

a

b

a

b

a
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(c) Exchange accepting and non-accepting states. This does not work for an NFA. Make
sure that there is a garbage state!

start
a

b

a

b

a

b

b

a

b

a

b

a

2. (b ∪ c)∗ · (aa)∗a∗ = (b ∪ c)∗ · a∗ .

3. The transition of a DFA is δ : Q × Σ → Q. The transition function of an NFA is
δ : Q× Σε → 2Q, where Σε = Σ ∪ {ε}. Both recognize the same class of languages.

4. We proof that T is not regular by using the pumping lemma. Assume T was regular and
let p be the pumping length. We consider the word w = apcbp+2. Consider any partition
w = xyz with |xy| ≤ p and |y| > 0. Then y only consists of as, so xyyyz contains at
least as many as as bs, which means that it is not in T .
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Task 3: Context-Free Languages (7 Points)

1. Give an example of a language that can be recognized by a pushdown automaton but not
by a non-deterministic finite automaton. (no proof required) (1 Points)

Consider the following language.

L = {(ab)n(ba)2n | n ≥ 1} .

2. What is the shortest word in the language? (1 Points)

3. Give a context free grammar that generates L. (5 Points)

Sample Solution

1. {anbn | n ∈ N}

2. abbaba

3.

S → abS1baba

S1 → abS1baba | ε
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Task 4: Turing machines (6 Points)

1. Is there a Turing machine that recognizes the language L defined in task 2.1 of this exam?

Remark: Do not just answer ’yes’ or ’no’ but explain your answer with a few (!) words.
(2 Points)

2. Consider the following types of computational models: GNFA, NFA, DFA, multitape
non-deterministic Turing machine, single-tape deterministic Turing machine, PDA, and
multitape deterministic Turing machine.

Order these types according to their computational power. Write X = Y if the class
of languages recognized by machines of type X equals the class of languages recognized
by machines of type Y , and write X < Y if there is a language that is recognized by a
machine of type Y but by none of type X . (4 Points)

Sample Solution

1. Yes, any DFA can be easily simulated by a Turing machine.

2. DFA = NFA = GNFA < PDA < single-tape deterministic Turing machine = multitape
deterministic Turing machine = multitape non-deterministic Turing machine
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Task 5: O - Notation (11 Points)

State whether the following claims are true or false (1 point each). Then prove or disprove the
claim. Use the definition of the O-notation.

1.
√

2
log2 n ∈ O(

√
2 · n). (1+4 Points)

2. 32n ∈ O(23n). (1+5 Points)

Sample Solution

1. The claim is true.
√

2
log2 n =

√
2log2 n =

√
n ≤
√

2 · n for n ≥ 1 (i.e., choose c = 1 and
n0 = 1).

2. The claim is false. Let c > 0.

32n ≤ c · 23n

⇔9n ≤ c · 8n

⇔
(

9

8

)n
≤ c

⇔n ≤ log 9
8
(c)

This means that for any c > 0 and any n0, there is an n ≥ n0 such that 32n > c · 23n

(choose n = max{n0, log 9
8
(c) + 1}).

7



Task 6: Decidability (17 Points)

1. Consider the problem MATCHING:

MATCHING := {〈G, k〉 | G is a simple graph and has a k-matching}.

A k-matching of G= (V,E) is a subset M ⊆ E with size k such that there are no two
adjacent edges e 6= e′ ∈M .

Show that MATCHING is decidable by giving an algorithm (abstract description or pseudo-
code) that decides whether a graph has a k-matching. (6 Points)

2. LetH be the language of the halting problem. Give a languageL such thatL∩H decidable
and give a language K such that K ∩H is undecidable. Prove your claims. (5 Points)

3. Let Σ be a fixed finite alphabet. Show that the language of deterministic finite automatons
(DFAs) on Σ that accept no word is decidable. Formally, show that

L = {〈A〉 | A is a deterministic finite automaton with L(A) = ∅}

is a decidable language.

Remark: You can use that it is not difficult to construct a Turing machine which tests
whether an input is the well formed encoding of a deterministic finite automaton. (6 Points)

Sample Solution

1. Given an input graph G = (V,E) with input number k, we test for all of the at most
O(|E|k) possible subsets of the edges of size k whether they form a matching. Remark:
The exact number of possible sets does not matter, it is sufficient to state that there are
only finitely many.

To check whether a subsetM is a matching we iterate through all pairs of edges e, e′ ∈M .
For all {u, v} = e 6= e′ = {u′, v′} we test whether they are adjacent. The edges are
adjacent if |{u, v, u′, v′}| ≤ 3. (Remark: One could argue more detailed here about how
to do this test.) If we do not find such an adjacent pair we accept the set M and (G, k) if
we find an adjacent pair of edges for each possible set M we reject (G, k). (1 Points)

Remark: The run-time of the algorithm does not need to be analyzed in order to obtain
the point. It suffices to point out that all involved steps are finished after finite time.

2. L = ∅ and K = H .

3. Let B be a DFA such that the language generated by B is ∅. That is, LB = ∅. (It is easy
to see that this is always possible regardless of the alphabet Σ simply by not having an
accepting state.) We have shown in the video lecture that testing equivalence for two DFA
is a decidable problem. Let M be such a Turing machine that can test equivalence for two
DFA. We can construct a Turing machine M ′, such that upon input A where A is a DFA,
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it will run M with input 〈A,B〉. If M accepts the input, then M ′ accepts the input A as
well, otherwise M ′ rejects. Since M will give a definite answer in finite time, we know
M ′ will give a definite answer in finite time as well. Hence, we know L is decidable.

9



Task 7: Complexity Theory (14 Points)

1. Give a language that cannot be decided by any Turing machine that runs in at most O(n!)
steps where n is the length of the input. (2 Points)

2. Given a graph G = (V,E), a vertex cover is a subset U ⊆ V of nodes of G such that
every edge of G is adjacent to a node in the subset U .

The VERTEXCOVER-problem is defined as

VERTEXCOVER := {〈G, k〉 | G is a simple graph and has a vertex cover
of size at most k}.

Show that VERTEXCOVER is NP-complete. (12 Points)

You may use that the problem INDEPENDENTSET is NP-complete.

INDEPENDENTSET := {〈G, k〉 | G is a simple graph and has an independent set
of size at least k}.

An independent set of size k of G = (V,E) is a subset I ⊆ V of nodes, such that |I| = k
and {u, v} /∈ E for all u, v ∈ I .

Sample Solution

1. The halting problem is not Turing-decidable and thus not decidable by a Turing machine
in at most O(n!) steps.

2. We reduce INDEPENDENTSET to VERTEXCOVER.

Claim: If G = (V,E) is a simple graph, then S ⊆ V is an independent set iff V \ S is a
vertex cover.

It follows that a graph has an independent set of size at least k iff it has a vertex cover
of size at most |V | − k. So for a given INDEPENDENTSET instance 〈G, k〉 we check if
〈G, |V | − k〉 is in VERTEXCOVER. The transformation from 〈G, k〉 to 〈G, |V | − k〉 can
be done in polynomial time.

Proof of the claim: Suppose S ⊆ V is an independent set. Let (v, w) be an edge. Not both
v and w can be in S, thus one of it is in V \ S. Now suppose V \ S is a vertex cover. Let
v and w be in S. Then (v, w) /∈ S, because otherwise (v, w) would not be covered.

To show that VERTEXCOVER is in NP we use the guess and check procedure.

Guess: Given an instance 〈G, k〉 of VERTEXCOVER guess a subset U ⊆ V of size at most
k.

Check: For each edge (v, w) ∈ E, go through U and check if v or w is in U . This takes
O(|E| · k) steps.

10



Task 8: Logic (13 Points)

1. Consider the following propositional formula

ψ := (x→ y ∨ z) ∧ (y → ¬x) ∧ (x ∧ z → y) ∧ x .

(a) Transferψ into an equivalent formula in conjunctive normal form (CNF). (2 Points)

(b) Use the resolution calculus to show that ψ is unsatisfiable, i.e., convert ψ into an
equivalent knowledge base KB (in CNF) and derive the empty clause from KB by
resolution. (5 Points)

2. Consider the following first order logical formulae

ϕ1 := ∀x¬R(x, x)

ϕ2 := ∀x, y, z (R(x, y) ∧R(y, z)→ R(x, z))

ϕ3 := ∃x∀y (x 6= y → R(x, y))

where x, y are variable symbols and R is a binary predicate. Give an interpretation

(a) I1 which is a model of ϕ1 ∧ ϕ2 ∧ ϕ3. (3 Points)

(b) I2 which is a model of ϕ1 ∧ ϕ2 ∧ ¬ϕ3. (3 Points)

Remark: No proof required.

Sample Solution

1. (a)
(¬x ∨ y ∨ z) ∧ (¬y ∨ ¬x) ∧ (¬x ∨ ¬z ∨ y) ∧ x

(b) KB= {{¬x, y, z}, {¬y,¬x}, {¬x,¬z, y}, {x}}.

{x}, {¬x, y, z} `R {y, z}
{y, z}, {¬y,¬x} `R {z,¬x}

{¬y,¬x}, {¬x,¬z, y} `R {¬x,¬z}
{z,¬x}, {¬z,¬x} `R {¬x}

{x}, {¬x} `R 2

2. (a) I1 := 〈N, RI1〉 where RI1(x, y) :⇔ x <N y.

(b) I2 := 〈Z, RI1〉 where RI2(x, y) :⇔ x <Z y.
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