Warming up for TCS Bridging Course

- Mathematical objects, tools, notions:
- Sets
- Sequences
- Functions
- Graphs
- Strings and languages
- Types of Proof:
- By construction
- By contradiction
- By induction
- By counterexample

- The alphabet set $\sum = \{a, c, n, o, r\}$
- •A={ no, corona}
- •B= {no, corona, roar, ac}
- Is $A \subseteq B$?
- Is $B \subseteq A$?
- A U *B*?
- A ∩ B?
- B \ A?
- A \B?

• For any two sets A and B, A $\Delta B = \emptyset \iff A = B$

Proof \Rightarrow): A Δ B = (A\B) U (B\A)= Ø $(A B) = \emptyset$ and $(B A) = \emptyset$ $A \subseteq B$ $B \subseteq A$

- Mathematical objects, tools, notions:
- Sets
- Sequences
- Functions
- Graphs
- Strings and languages
- Types of Proof:
- By construction
- By contradiction
- By induction
 - By counterexample

A 10 Year Old Discovered This Famous Formula

$1+2+...+n=\frac{n(n+1)}{2}$

Induction

 Goal: for an integer n ≥ 0, use mathematical induction to prove a statement holds true for all values of n.

<u>2 STEPS:</u>

• Base case :

prove the statement true for n = 0

• Induction step:

assume the statement holds for any given case n = k, where $k \ge 0$ and use this assumption to prove the statement true for n = k + 1.

• Use proof by induction to prove

•
$$1+2+...+n=\frac{n(n+1)}{2}$$
, for $n \ge 1$

- <u>Base step</u>: for n=1, we have $\frac{1(1+1)}{2} = 1$
- Inductive hypothesis: assume for any case n=k holds , where k is some integer k ≥1

i.e.
$$1+2+...+k = \frac{k(k+1)}{2}$$
, where k is some integer k ≥ 1
Now, let's prove the statement true for $n=k+1$

i.e.
$$1+2+...+(k+1) = \frac{(k+1)(k+2)}{2}$$
 (is it true?)
 $1+2+...k+(k+1) = \frac{k(k+1)}{2} + (k+1) = \frac{k(k+1)+2(k+1)}{2} = \frac{(k+1)(k+2)}{2}$ (Yes!)

- Mathematical objects, tools, notions:
- Sets
- Sequences
- Functions
- Graphs
 - Strings and languages
 - Types of Proof:
 - By construction
 - By contradiction
 - By induction
 - By counterexample

Graphs

We write G=(V,E).

Graphs

Graphs

How many edges in a *complete graph on* **n** *vertices*?

n(n-1)/2 edges!

Don't count each edge twice

- How many edges are there in a simple graph G= (V, E) ?
- $\sum_{v \in V} degree(v) = 2 |E|$ (Handshaking Lemma)
- Each edge contributes 2 to the sum on the left.

• Draw a graph on 5 nodes such that each node is of degree 3.

Can you?

Draw a graph on 5 nodes such that each node is of degree 3

- <u>Solution</u>: you can't!
- Sum of all degrees= 5 x 3= 15

• See you Next Week !