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Exercise 1: Miscellaneous Mathematical Proofs (3+1+1+2+1 Points)

1. Let S(n) = 3" i be the sum of the first n natural numbers and C(n) = >, i® be the sum
of the first n cubes. Use mathematical induction to prove the following interesting conclusion:
C(n) = S?(n) for every integer n > 0.

2. Let A, B, and C' be subsets of U. Which of the following statements is true? Justify.

e [fANB=ANC, then B=C.
e f AUB=AUC, then B=C.
e AUB = AN B, where A is the compliment of A.

3. Let Ay, Ao, ..., A be nonempty subsets of U, where k is any positive integer. Prove that there
exists a nonempty subset A C U such that AN A; # ¢, for all i € {1,2,...,k}.

Sample Solution

1. Base case: for n = 1, 13 = (1)2 is true.

Induction step: for each k > 1, we assume that the statement holds true for k i.e. C(k) = S%(k)
(induction hypothesis IH). Now, we need to prove that the statement holds true for k+1 i.e. we
want to show that C(k +1) = S%(k + 1).
Indeed first, we recall that S(n) = > i = "(n;l), hence S%(k + 1) = (WF =
(k+1)* (k+2)*

1 .

Next, we have that C(k+ 1) = S8 83 4+ (k+1)% = C(k) + (k + 1)3 = S52(k) + (k + 1)® =
2 2 2 2
(k(k;n)Q-i- (k+1)3 = (k (k4+1) )+ (k4 1) = (lc+41) (k% + 4k +4) = (k+41) (k+2)2 = S2(k +1).
Hence, the statement holds true for k + 1, which ends our induction proof.

2. e False. We give a counterexample: take A = {1,2,3}, B = {1,4} and C = {1,5}, hence
ANB=ANC and B # C.

e False. We give a counterexample: take A = {1,2}, B = {1,3} and C = {2,3}, hence
AUB=AUC and B#C.

e (De Morgan’s law). Indeed,
1r€AUB < 1¢ AUB < v¢Aandr ¢ B < xc A and
r€B < z€ANB
hence, AUB = AN B.

3. We construct A by choosing one element from each A;, for all i € {1,2, ..., k}.



Exercise 2: Graphs (Part 1) (3+3 Points)

A simple graph is a graph without self loops, i.e., every edge of the graph is an edge between two
distinct nodes. The degree d(v) of a node v € V' in an undirected graph G = (V, E) is the number of
its neighbors, i.e, d(v) = [{u € V' | {v,u} € E}|. Let m > 0 denote the number of edges in graph G.

1. Prove the handshaking lemma i.e. > .\ d(v) = 2m via mathematical induction on m for any
simple graph G = (V, E).

2. Show that every simple graph with an odd number of nodes contains a node with even degree.

Sample Solution

1. We prove the handshaking lemma by mathematical induction on m.

Base step: let G = (V, E) be a graph where |V| = n and |E| = m = 0. Notice that G is the
empty graph on n nodes, hence ) i d(v) = 0, thus the handshaking lemma is true on G.
Induction step: for each k, we assume that the statement holds true for k ie. > - d(v) = 2k
for any graph G = (V, E) where |V| =n and |E| = k (induction hypothesis IH).

Now, we need to prove that the statement holds true for k + 1 i.e. we want to show that
Y ovey d(v) =2(k 4 1) for any G = (V, E) where |V| =n and |E| =k + 1.

Indeed, first we consider a graph G = (V, E) where |V| = n and |E| = k + 1. Let {u,v} be an
edge in G. Let G' = (V, E') where E' = E\{xz,y} i.e. G’ is the graph obtained after removing
an edge {z,y} from G. Note that we denote by dg(v),dq (v) the degree of node v in G and G’
respectively.

First we notice that G’ has k edges, hence by IH )~ i, dg(v) = 2k.
Moreover, >, ¢y dg/(v) = Zvev\gw} der (v) + de (@) + dar(y) = D pev\ oy} da(v) + (da() —
D+ (da(y) = 1) = e\ fayy 6 (v) + da(z) +da(y) =2 =3 v da(v) — 2.
Thus 3,y da(v) = ey dor(v) + 2 E 2k +2 = 2(k + 1)
Hence, the statement holds true for k£ + 1, which ends our induction proof.

2. Let G = (V, E) be a graph. We argue by contradiction. Assume that Vv € V', d(v) is odd. Now
since G has odd number of nodes, we notice that ) i, d(v) is the sum of an odd number of
odd numbers, which is odd. But by the handshaking lemma ) - d(v) must be even. This is a

contradiction. Thus our assumption must have been false and hence there must exist a node in
G with even degree.

Exercise 3: Graphs (Part 2) (2+4 Points)

A graph G = (V, E) is said to be connected if for every pair of vertices u,v € V such that u # v there
exists a path in G connecting u to v.

1. Prove that if G is connected, then for any two nonempty subsets V; and Vo of V' such that
ViUVy =V and V13 NV, = ¢, there exists an edge joining a vertex in V] to a vertex in V5.

2. Let G be a simple, connected graph and P be a path of the longest length ¢ in G. Show that if
the two ends of P are adjacent, then V = V(P), where V(P) is the set of vertices of P.
Hint: Try to argue by contradiction.

Sample Solution

Definition: a family of sets Vi, Va, ..., Vi, where k is some positive integer is called a partition of V if
and only if all of the following conditions hold:



e Foralli e {1,2....,k}, V; is a nonempty subset of V'
i U?:l Vi=V
o ViNV;=¢forallije{l,2.., k} such that ¢ # j

Intuitively you can think of a partition of a set V' as a set of non-empty subsets of V' such that every
element x € V is in exactly one of these subsets.

1. Let V4 and V5 be any two non empty subsets of V' such that V3 UV, =V and V1 NV, = ¢ (i.e.
Vi and V3 is a partition of the vertex set V). Let u € V; and v € V5. Since G is connected, there
exists a path in G joining u to v. For this to happen, there must then exist an edge joining some
vertex in V7 to some other vertex in V5, which ends our proof.

2. Notations and definitions: A path P on n vertices say {v1,vs,...,v,} is a graph whose set of
edges is {{vj,vi+1};1 <i <n — 1} and to describe it we write P = v1vg...v,.
Let v; and v; be any two vertices of P, where 1 < i < j < n, then we denote by P[Ui7vj] =
V;Vi4+1...v; the subpath of P with ends v; and v;.

Solution: We argue by contradiction. Suppose V' # V(P), where we define V(P) := {v1, va, ..., vg41},
then there exists at least one vertex in V' that is not in V(P). Hence, we can define V; :=
VAV(P) # ¢ and Vi := V(P) # ¢. Notice that V; and V5 from a partition of V. Moreover
since G is connected, by the previous part we deduce that there exists an edge joining a vertex
in V1 (call it z) to a vertex v in Vo = V(P), where 1 < k < ¢+ 1. Let P = vjvs...v41 and

e = {x,vx}. Since the two ends of P are adjacent i.e. {vi,v41} € E, we can define another
path P' = 2vp Py, .| v, )0e+1v1 P, 0, ,)- Notice that P is a path in G of length £ + 1, which is a
contradiction. Hence, our supposition is incorrect. Thus, V = V(P).



