

# Theoretical Computer Science - Bridging Course Sample Solution Exercise Sheet 1

Due: Tuesday, 29th of April 2025, 12:00 pm

# Exercise 1: Miscellaneous Mathematical Proofs (3+1+1+2+1 Points)

- 1. Let  $S(n) = \sum_{i=1}^{n} i$  be the sum of the first *n* natural numbers and  $C(n) = \sum_{i=1}^{n} i^3$  be the sum of the first *n* cubes. Use mathematical induction to prove the following interesting conclusion:  $C(n) = S^2(n)$  for every integer  $n \ge 0$ .
- 2. Let A, B, and C be subsets of U. Which of the following statements is true? Justify.
  - If  $A \cap B = A \cap C$ , then B = C.
  - If  $A \cup B = A \cup C$ , then B = C.
  - $\overline{A \cup B} = \overline{A} \cap \overline{B}$ , where  $\overline{A}$  is the complement of A.
- 3. Let  $A_1, A_2, ..., A_k$  be nonempty subsets of U, where k is any positive integer. Prove that there exists a nonempty subset  $A \subseteq U$  such that  $A \cap A_i \neq \phi$ , for all  $i \in \{1, 2, ..., k\}$ .

# Sample Solution

1. Base case: for  $n = 1, 1^3 = (1)^2$  is true.

Induction step: for each  $k \ge 1$ , we assume that the statement holds true for k i.e.  $C(k) = S^2(k)$  (induction hypothesis IH). Now, we need to prove that the statement holds true for k + 1 i.e. we want to show that  $C(k + 1) = S^2(k + 1)$ .

Indeed first, we recall that  $S(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ , hence  $S^2(k+1) = (\frac{(k+1)(k+2)}{2})^2 = \frac{(k+1)^2(k+2)^2}{4}$ .

Next, we have that  $C(k+1) = \sum_{i=1}^{k} i^3 + (k+1)^3 = C(k) + (k+1)^3 \stackrel{\text{IH}}{=} S^2(k) + (k+1)^3 = \left(\frac{k(k+1)}{2}\right)^2 + (k+1)^3 = \left(\frac{k^2(k+1)^2}{4}\right) + (k+1)^3 = \frac{(k+1)^2}{4}(k^2 + 4k + 4) = \frac{(k+1)^2}{4}(k+2)^2 = S^2(k+1).$ Hence, the statement holds true for k+1, which ends our induction proof.

- 2. False. We give a counterexample: take  $A = \{1, 2, 3\}$ ,  $B = \{1, 4\}$  and  $C = \{1, 5\}$ , hence  $A \cap B = A \cap C$  and  $B \neq C$ .
  - False. We give a counterexample: take  $A = \{1, 2\}$ ,  $B = \{1, 3\}$  and  $C = \{2, 3\}$ , hence  $A \cup B = A \cup C$  and  $B \neq C$ .
  - (De Morgan's law). Indeed,

$$\begin{array}{ccc} x\in\overline{A\cup B} \iff x\notin A\cup B \iff x\notin A \text{ and } x\notin B \iff x\in\overline{A} \text{ and} \\ x\in\overline{B} \iff x\in\overline{A}\cap\overline{B} \end{array}$$

hence,  $\overline{A \cup B} = \overline{A} \cap \overline{B}$ .

3. We construct A by choosing one element from each  $A_i$ , for all  $i \in \{1, 2, ..., k\}$ .

#### Exercise 2: Graphs (Part 1)

A simple graph is a graph without self loops, i.e., every edge of the graph is an edge between two distinct nodes. The degree d(v) of a node  $v \in V$  in an undirected graph G = (V, E) is the number of its neighbors, i.e.,  $d(v) = |\{u \in V \mid \{v, u\} \in E\}|$ . Let  $m \ge 0$  denote the number of edges in graph G.

- 1. Prove the handshaking lemma i.e.  $\sum_{v \in V} d(v) = 2m$  via mathematical induction on *m* for any simple graph G = (V, E).
- 2. Show that every simple graph with an odd number of nodes contains a node with even degree.

## Sample Solution

1. We prove the handshaking lemma by mathematical induction on m.

Base step: let G = (V, E) be a graph where |V| = n and |E| = m = 0. Notice that G is the empty graph on n nodes, hence  $\sum_{v \in V} d(v) = 0$ , thus the handshaking lemma is true on G.

Induction step: for each k, we assume that the statement holds true for k i.e.  $\sum_{v \in V} d(v) = 2k$  for any graph G = (V, E) where |V| = n and |E| = k (induction hypothesis III).

Now, we need to prove that the statement holds true for k + 1 i.e. we want to show that  $\sum_{v \in V} d(v) = 2(k+1)$  for any G = (V, E) where |V| = n and |E| = k + 1.

Indeed, first we consider a graph G = (V, E) where |V| = n and |E| = k + 1. Let  $\{u, v\}$  be an edge in G. Let G' = (V, E') where  $E' = E \setminus \{x, y\}$  i.e. G' is the graph obtained after removing an edge  $\{x, y\}$  from G. Note that we denote by  $d_G(v), d_{G'}(v)$  the degree of node v in G and G' respectively.

First we notice that G' has k edges, hence by IH  $\sum_{v \in V} d_{G'}(v) = 2k$ .

Moreover,  $\sum_{v \in V} d_{G'}(v) = \sum_{v \in V \setminus \{x,y\}} d_{G'}(v) + d_{G'}(x) + d_{G'}(y) = \sum_{v \in V \setminus \{x,y\}} d_G(v) + (d_G(x) - 1) + (d_G(y) - 1) = \sum_{v \in V \setminus \{x,y\}} d_G(v) + d_G(x) + d_G(y) - 2 = \sum_{v \in V} d_G(v) - 2.$ 

Thus  $\sum_{v \in V} d_G(v) = \sum_{v \in V} d_{G'}(v) + 2 \stackrel{\text{IH}}{=} 2k + 2 = 2(k+1)$ 

Hence, the statement holds true for k + 1, which ends our induction proof.

2. Let G = (V, E) be a graph. We argue by contradiction. Assume that  $\forall v \in V$ , d(v) is odd. Now since G has odd number of nodes, we notice that  $\sum_{v \in V} d(v)$  is the sum of an odd number of odd numbers, which is odd. But by the handshaking lemma  $\sum_{v \in V} d(v)$  must be even. This is a contradiction. Thus our assumption must have been false and hence there must exist a node in G with even degree.

#### Exercise 3: Graphs (Part 2)

A graph G = (V, E) is said to be *connected* if for every pair of vertices  $u, v \in V$  such that  $u \neq v$  there exists a path in G connecting u to v.

- 1. Prove that if G is connected, then for any two nonempty subsets  $V_1$  and  $V_2$  of V such that  $V_1 \cup V_2 = V$  and  $V_1 \cap V_2 = \phi$ , there exists an edge joining a vertex in  $V_1$  to a vertex in  $V_2$ .
- 2. Let G be a simple, connected graph and P be a path of the longest length  $\ell$  in G. Show that if the two ends of P are adjacent, then V = V(P), where V(P) is the set of vertices of P. *Hint: Try to argue by contradiction.*

### Sample Solution

Definition: a family of sets  $V_1, V_2, ..., V_k$ , where k is some positive integer is called a *partition* of V if and only if all of the following conditions hold:

## (2+4 Points)

- For all  $i \in \{1, 2..., k\}$ ,  $V_i$  is a nonempty subset of V
- $\bigcup_{i=1}^{k} V_i = V$
- $V_i \cap V_j = \phi$  for all  $i, j \in \{1, 2..., k\}$  such that  $i \neq j$

Intuitively you can think of a partition of a set V as a set of non-empty subsets of V such that every element  $x \in V$  is in exactly one of these subsets.

- 1. Let  $V_1$  and  $V_2$  be any two non empty subsets of V such that  $V_1 \cup V_2 = V$  and  $V_1 \cap V_2 = \phi$  (i.e.  $V_1$  and  $V_2$  is a partition of the vertex set V). Let  $u \in V_1$  and  $v \in V_2$ . Since G is connected, there exists a path in G joining u to v. For this to happen, there must then exist an edge joining some vertex in  $V_1$  to some other vertex in  $V_2$ , which ends our proof.
- 2. Notations and definitions: A path P on n vertices say  $\{v_1, v_2, ..., v_n\}$  is a graph whose set of edges is  $\{\{v_i, v_{i+1}\}; 1 \le i \le n-1\}$  and to describe it we write  $P = v_1 v_2 ... v_n$ . Let  $v_i$  and  $v_j$  be any two vertices of P, where  $1 \le i \le j \le n$ , then we denote by  $P_{[v_i, v_j]} = v_i v_{i+1} ... v_j$  the subpath of P with ends  $v_i$  and  $v_j$ .

Solution: We argue by contradiction. Suppose  $V \neq V(P)$ , where we define  $V(P) := \{v_1, v_2, ..., v_{\ell+1}\}$ , then there exists at least one vertex in V that is not in V(P). Hence, we can define  $V_1 := V \setminus V(P) \neq \phi$  and  $V_2 := V(P) \neq \phi$ . Notice that  $V_1$  and  $V_2$  from a partition of V. Moreover since G is connected, by the previous part we deduce that there exists an edge joining a vertex in  $V_1$  ( call it x) to a vertex  $v_k$  in  $V_2 = V(P)$ , where  $1 \leq k \leq \ell + 1$ . Let  $P = v_1 v_2 \dots v_{\ell+1}$  and  $e = \{x, v_k\}$ . Since the two ends of P are adjacent i.e.  $\{v_1, v_{\ell+1}\} \in E$ , we can define another path  $P' = xv_k P_{[v_{k+1}, v_\ell]} v_{\ell+1} v_1 P_{[v_2, v_{k-1}]}$ . Notice that P' is a path in G of length  $\ell + 1$ , which is a contradiction. Hence, our supposition is incorrect. Thus, V = V(P).