

Theoretical Computer Science - Bridging Course Sample Solution Exercise Sheet 4

Due: Tuesday, 20th of May 2025, 12:00 $\rm pm$

Exercise 1: CFGs

(10 Points)

Give a context free grammar for each of the following languages.

- $L_1 = \{a^i b^j | 0 < i \le j\}$
- $L_2 = \{a^{2n}b^n \mid n > 0\}$
- $L_3 = \{a^*wc^k | w \in \{a, b\}^*, \text{ and } k \text{ is the number of } a\text{'s in } w\}$
- $L_4 = \{a^k b^{3k} | k \ge 0\}$
- $L_1 \circ L_2$
- $L_1 \cup L_2$

•

Sample Solution

Let S_1 , S_2 , S_3 , and S_4 be the respective start variables of the first four grammars.

 $\begin{array}{l} S_{1} \rightarrow aS_{1}b \mid B \\ B \rightarrow Bb \mid ab \end{array}$ $S_{2} \rightarrow aaS_{2}b \mid aab$ $\begin{array}{l} S_{3} \rightarrow AW \\ A \rightarrow aA \mid \epsilon \\ W \rightarrow BaBCc \mid B \mid \epsilon \\ B \rightarrow Bb \mid \epsilon \end{array}$ or $\begin{array}{l} S_{3} \rightarrow AW \\ A \rightarrow aA \mid \epsilon \\ W \rightarrow aWc \mid bW \mid \epsilon \end{array}$

•
$$S_4 \rightarrow a S_4 b b b \mid \epsilon$$

$$T_1 \rightarrow S_1 S_2$$
 •
$$T_2 \rightarrow S_1 \mid S_2$$

Exercise 2: PDAs

(6 Points)

Construct a PDA for the following languages

- L_2 in exercise 1.
- L_3 in exercise 1.
- $L_5 = \{a^n b^{2m} b a^n \mid m, n > 0\}$ over the alphabet $\Sigma = \{a, b\}$.

Sample Solution

The formal definition of the automatons is implicitly given.

• PDA for L_2 :

• PDA for L_3 :

• PDA for L_5 :

Exercise 3: Chomsky Normal Form

Given the following CFG:

$$\begin{split} S &\to ASA \mid A \mid \epsilon \\ A &\to 00 \mid \epsilon \end{split}$$

- 1. What is the language the above CFG recognizes?
- 2. Convert the following CFG into an equivalent CFG in Chomsky normal form, by following the procedure given in the lecture.

Sample Solution

- 1. The language is the string of zeros where the number of zero's is even.
- 2. Applying the procedure from the lecture we get the following equivalent grammar in Chomsky normal form.

$$\begin{split} S_0 &\to AU_1 \mid SA \mid AS \mid AA \mid UU \mid \epsilon \\ S &\to AU_1 \mid SA \mid AS \mid AA \mid UU \\ A &\to UU \\ U &\to 0 \\ U_1 &\to SA \end{split}$$

Exercise 4: Closure in CFL

(Bonus Points)

- 1. Show that the context-free languages are closed under union, concatenation and Kleene star. Hint: try to prove that the context-free languages are closed under the above operators via creating the appropriate grammars.
- 2. Knowing that $L_6 = \{a^i b^j c^k \mid i < j\}$ is a context free language, are context free languages closed under intersection?

Hint: Use the fact that $L_7 = \{a^i b^j c^k \mid i < j \text{ and } i < k\}$ is not a context free language.

Sample Solution

1. The context-free languages are closed under union, concatenation and Kleene star, i.e. if L_1 and L_2 are context-free languages, so are $L_1 \cup L_2$, L_1L_2 and L_1^* . Indeed, we will prove that the languages are closed by creating the appropriate grammars. Suppose we have two context-free languages L_1 and L_2 , represented by grammars with start symbols S_1 and S_2 respectively. First of all, rename all the terminal symbols in the second grammar so that they don't conflict with those in the first. Then:

To get the union, add the rule $S \rightarrow S_1 \mid S_2$, with S representing the start symbol of the grammar of $L_1 \cup L_2$.

To get the concatenation, add the rule $S \rightarrow S_1 S_2$, with S representing the start symbol of the grammar of $L_1 L_2$.

To get the Kleene star of L_1 , add the rule $S \rightarrow S_1 S \mid \varepsilon$ to the grammar for L_1 , with S representing the start symbol of the grammar of L_1^* .

2. The context-free languages are not closed under intersection, i.e. if L_1 and L_2 are context-free languages, it it not always true that $L_1 \cap L_2$ is also. We will prove the non-closure of intersection by exhibiting a counter-example. Consider the following two context free languages:

$$\begin{array}{rcl} L_6 &=& \{a^i b^j c^k &\mid & i < j\} \\ L_8 &=& \{a^i b^j c^k &\mid & i < k\} \end{array}$$

The intersection of these languages is $L_6 \cap L_8 = \{a^i b^j c^k \mid i < j \text{ and } i < k\} = L_7$ and we are given that this language is not context-free.

Bonus solution: A grammar for L_8 is as follows

$$\begin{split} S &\to aSc \mid A \\ A &\to BC \\ B &\to Bb \mid \epsilon \\ C &\to Cc \mid c \end{split}$$