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Exercise 1: Proving NonCFL (5+5 Points)

Use the Pumping Lemma to show that the following languages are not CFL.

1. L = {anba2nba3n | n ≥ 0}

2. L = {aibjck | i < j and i < k}

Bonus: L = {am | m is a prime}
NB: If you wish you can try first and prove it nonregular using the Pumping Lemma for regular
languages and the same idea should be extended to CFLs.

Sample Solution

In all parts, we are going to assume that L is a CFL. This means that the property from the Pumping
Lemma should hold true for L (i.e. there exists a pumping length p ≥ 1 such that for every string
w ∈ L where |w| ≥ p, we can break w into five substrings w = uvxyz such that properties 1, 2,
and 3 hold true). But, we will show that in fact this property will not hold true for L (i.e. we will
show that: for this pumping length p ≥ 1, there exists a (bad) word w ∈ L of length at least p such
that for every composition of w = uvxyz that satisfies properties 2 and 3, it turns out property 1 is
never satisfied). This will then give us a contradiction to the Pumping Lemma, hence, our initial
assumption must have been wrong. Therefore, L is a nonCFL.

1. � Assume L is a CFL.

� This means that the property from the Pumping Lemma for context free languages should
hold true for L (you can state the pumping lemma here).

� Now, let p be any pumping length.

� Consider a string w := apba2pba3p ∈ L and has length at least p.

� Consider any composition w = uvxyz with |vy| > 0 and |vxy| ≤ p (conditions 2 and 3 of
the Pumping Lemma).

� We show that uv2xy2z cannot be in the language, giving a contradiction.
Indeed, we have two cases:
Case 1: If v or y contained b, then the string uv2xy2z would have more than two b’s and is
therefore not in L.
Case 2: If neither v nor y contains b, then that means that v as well as y is fully contained
in one of the three segments ap, a2p and a3p. But then pumping w up to uv2xy2z would
violate the 1 : 2 : 3 length ratio of the segments, because the length of at least one segment
is changed (as |vy| > 0) and at least one segment keeps its length. Thus, uv2xy2z is not in
L.

� This is a contradiction to the Pumping Lemma.



� Therefore, L is a nonCFL.

2. � Assume L is a CFL.

� This means that the property from the Pumping Lemma for context free languages should
hold true for L (you can state the pumping lemma here).

� Now, let p be any pumping length.

� Consider a string w := apbp+1cp+1 ∈ L and has length at least p.

� Consider any composition w = uvxyz with |vy| > 0 and |vxy| ≤ p (conditions 2 and 3 of
the Pumping Lemma).

� We show that uv2xy2z or uv0xy0z cannot be in the language, giving a contradiction. Indeed,
we can be in either of the four cases:
Case 1: If v or y contains a mixture of symbols from {a, b, c}; then uv2xy2z would be in the
wrong order and thus not in L.
Case 2: If vxy in contained in ap, thus v or y consists entirely of ‘a’s 1. Then if we pump up
e.g. uv2xy2z, there is no way for v and y, which cannot have both ‘b’s and ‘c’s to generate
enough of these letters to keep their number greater than that of the ‘a’s (it can do it for
one or the other of them, but not both). Thus, uv2xy2z is not in L.
Case 3: If v or y contains only ‘b’s or only ‘c’s. Consider the string uv0xy0z which must be
in L. Since we have dropped both v and y, we must have at least one ‘b’ or one ‘c′ less than
we had in uvxyz, which was apbp+1cp+1. Consequently, this string no longer has enough of
either ‘b’s or ‘c’s to be a member of L. Thus, uv0xy0z is not in L.
Case 4: If v or y contains only ‘c’s. Similar argument as in case 3.

� This is a contradiction to the Pumping Lemma.

� Therefore, L is a nonCFL.

Bonus solution: Assume L is a CFL. This means that the property from the Pumping Lemma for con-
text free languages should hold true for L. Now, let p be any pumping length. Let t > p be a prime.
Consider the string w = at ∈ L and of length at least p. Let uvxyz be any decomposition of wt, satisfy-
ing that |vy| > 0 and |vxy| ≤ p. Thus v must be ai and y must be aj , for some i ≥ 0 and j ≥ 0 such that
i+ j > 0. If we pump up t+ 1 times, then we have the string uvt+1xyt+1z = uvxyz · vtyt = at(1+i+j).
Since both t and 1 + i+ j are greater than 1, then t(1 + i+ j) is not a prime. Hence, uvt+1xyt+1z is
not in L. Thus a contradiction to the Pumping Lemma. Therefore, L is nonCFL.

Remark: L can also be proven non regular using the pumping lemma for regular languages with a
simialr argument as above. Indeed, assume the language is regular. This means that the property from
the Pumping Lemma for regular languages should hold true for L. Let p be the pumping length. Let
t > p be a prime. Consider w = at. Then, any composition of at, satisfying that |y| > 0 and |xy| ≤ p
should like the following: let x = ai, y = aj and z = ak such that i+j+k = t, j > 0, and i+j ≤ p. We
pump up as above and get xyt+1z = aiaj(t+1)ak = a(i+j+k)atj = at(j+1), where both t and j + 1 are
greater than 1. Therefore, t(j + 1) is not a prime, and hence xyt+1z is not in L. Thus a contradiction
to the Pumping Lemma. Therefore, L is not regular.

Exercise 2: Operation Shift (3+3 Points)

Consider a Turing machine M that is given an arbitrary input string over alphabet Σ = {1, 2, . . . , n}
on its input tape. We would like M to insert an empty cell, i.e., ⊔, at the beginning of the tape without

1We say (v or y) and not (v and y), since condition 2 is still satisfied even if either v or y was an ε. So a possible
composition of w in here (case 1) can have one of them as ε, so e.g. v = ε and y = a. Thus, we need to make sure that
we have covered/talked about these scenarios too



removing any symbol on the tape. As an example, the Turing machine is supposed to change the input
tape of the form ⟨2, 4, 4, 6, 1, 8, 4,⊔,⊔, . . . ⟩ to ⟨⊔, 2, 4, 4, 6, 1, 8, 4,⊔,⊔, . . . ⟩. Although this operation is
not explicitly defined for a Turing machine, one can consider such an operation as shifting the whole
string one cell to the right on the input tape.

(a) Give a formal definition of M to perform the desired operation such that M recognizes the
language Σ∗.

(b) For n = 2, i.e., Σ = {1, 2}, draw the state diagram of your constructed Turing machine.

Sample Solution

(a) Consider the set of states to beQ = {q0, qacc, qrej}∪{qc|c ∈ Σ}. And Γ is the tape alphabet where ⊔ ∈
Γ,Σ ⊆ Γ. Then, the transition functions are as follows.

∀c ∈ Σ; δ(q0, c) = (qc,⊔, R)

∀c, c′ ∈ Σ; δ(qc, c
′) = (qc′ , c, R)

∀c ∈ Σ; δ(qc,⊔) = (qacc, c, R)

δ(q0,⊔) = (qacc,⊔, R)

(b)

q0start q1

q2

qacc

qrej

1 → ⊔, R

⊔ → ⊔, R

2→
⊔, R 2

→
1,
R

1
→

2,
R

⊔ → 1, R

⊔ →
2,
R

1 → 1, R

2 → 2, R

Remark: As discussed in class, if we want to be more precise/correct and for the state diagram to be
well defined, we can redefine the trasnsition function of the TM from the lecture to be e.g
δ : Q\{qacc, qrej} × Γ → Q× Γ× {L,R}.

Remark: Whenever needed in the upcoming exerices, we can detect the beginning of the input on
the tape e.g. by initially shifting all the input one step to the right (cf. exercise 1). Hence, we can
always have a blank symbol placed at the leftmost of the tape.
Alternatively, one can use a trickier method mentioned from the book by Sipser: ”A trickier method
of finding the left-hand end of the tape takes advantage of the way that we defined the Turing machine
model. Recall that if the machine tries to move its head beyond the left-hand end of the tape, it stays
in the same place. We can use this feature to make a left-hand end detector. To detect whether the
head is sitting on the left-hand end, the machine can write a special symbol over the current position
while recording the symbol that it replaced in the control. Then it can attempt to move the head to the
left. If it is still over the special symbol, the leftward move didn’t succeed, and thus **the head must
have been at the left-hand end**. If instead it is over a different symbol, some symbols remained to the
left of that position on the tape. Before going farther, the machine must be sure to restore the changed



symbol to the original.”

Remark: For the rest of course and whenever needed, we detect the beginning of the input on the
tape by e.g. initially shifting all the input one step to the right. Hence, a blank symbol will be placed
at the leftmost of the tape.

Exercise 3: Constructing a TM (4 Points)

Consider alphabet A = {1, 2, . . . , 9}. We call a string S over A a blue string, if and only if the string con-
sisting of the odd-positioned symbols in S is the reverse of the string consisting of the even-positioned
symbols in S. For example S = 14233241 is a blue string since the substring of the odd-positioned
symbols is 1234 which is the reverse of the substring of the even-positioned symbols, i.e., 4321.

Design a Turing machine which accepts all blue strings over A. You do not need to provide a formal
description of the Turing machine but your description has to be detailed enough to explain every
possible step of a computation.

Sample Solution

A high level description would be as follows:
On input S, first go through all symbols. If it is an odd number, reject. Else repeat the following:
Go left until you reach the first unmarked symbol, mark it, go right to the last unmarked symbol,
mark it, and compare both symbols. If they are different, reject.
Accept if all symbols are marked.

Exercise 4: Bonus Question ( Points)

Consider a push-down automata with two stacks instead of one. Can it be as powerful as a Turing
machine? Give an intuitive explanation?
Hint: Try to show how can the Two-Stack PDA simulate the TM tape.

Sample Solution

We first add the entire input to the first stack, then reverse it so it is in the second stack with the first
character at the top. Now, moving the tape head left or right is the same as popping a symbol off of
one stack and pushing it onto the other (and in this way you can see that, the first stack holds what
is to the left of the head, while the second stack holds what is to the right of the head along with the
symbol which is under the current head).
Moreover, reading the symbol under the tape head is the same as reading the symbol at the top of
the second stack. And writing a new symbol under the tape head is emulated by replacing the symbol
on top of the second stack with the new symbol ( i.e. popping the symbol from top of the stack then
pushing this new symbol onto it). This allows to simulate the tape of TM , where the TM head is
corresponding to the heads of the two stacks of the Two-Stack PDA .

Note: We can use this to show that a push-down automata with two stacks is equally powerful as
Turing machines (i.e. with regards to language recognition).


