
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
S. Faour

Theoretical Computer Science - Bridging Course

Sample Solution Exercise Sheet 7
Due: Tuesday, 17th of June 2025, 12:00 pm

Exercise 1: The Halting Problem Revisited (3+3 Points)

Show that both the halting problem and its special version are both undecidable.

(a) The halting problem is defined as

H = {⟨M,w⟩ | ⟨M⟩ encodes a TM and M halts on string w}.

Hint: Assume H is decidable and try to reach a contradiction by showing that some known unde-
cidable problem (cf. from the lecture) is decidable.

(b) The special halting problem is defined as

Hs = {⟨M⟩ | ⟨M⟩ encodes a TM and M halts on ⟨M⟩}.

Hint: Assume that M is a TM which decides Hs and then construct a TM which halts iff M does
not halt. Use this construction to find a contradiction.

Sample Solution

(a) The solution is via the reduction method and thus using the hint.
Assume H is decidable, hence there exists a TM D that decides on it.
We know from the lecture that the ATM problem is undecidable.
We reach a contradiction by constructing a TM D′ that decides on ATM as follows.
D′= “ On input ⟨M,w⟩, where M is a TM and w is a string:
1. Run TM D on ⟨M,w⟩, if D rejects, D′ reject.
2. If D accepts, simulate M on w until it halts. If M accepts, accept; if M rejects, D′ reject.”
So D′ is a decider for ATM , but D′ cannot exist.
Thus, our assumption is false; hence H is undecidable.

(b) The solution is via the diagonalization method and thus using the hint and similar to the lecture.
Assume Hs is decidable, hence there exists a TM D that decides on it.
We build a Turing machine T , which is unlike the lecture not a decider. We do so using the
help of D to reach a contradiction. Note that the contradiction will stem from the idea that when
feeding T its own encoding, we will reach a contradiction to some truth. However, our assumption
yields that T should always be correct and never give us a contradiction, thus our assumption
must be false and thus H is undecidable. We define T as follows.

T = “On input ⟨M⟩, where M is a TM:
1. Run D on ⟨M⟩
2. If D accepts, then T loop and if D rejects, then T halts and accepts.

Thus we have

D(⟨M⟩) =

{
accept if M halts ⟨M⟩
reject if M loops on ⟨M⟩

And thus

T (⟨M⟩) =

{
loop if M halts ⟨M⟩
accept if M loops on ⟨M⟩

We feed T its own encoding and reach a contradition as follows

T (⟨T ⟩) =

{
loop if T halts ⟨T ⟩
accept if T loops on ⟨T ⟩

Exercise 2: A Non-Turing Recongnizable Problem (3 Points)

Fix an enumeration of all Turing machines (that have input alphabet Σ): ⟨M1⟩, ⟨M2⟩, ⟨M3⟩,
Fix also an enumeration of all words over Σ: w1, w2, w3,
Prove that language L = {w ∈ Σ∗ | w = wi, for some i, and Mi does not accept wi} is not Turing
recognizable.
Hint: Try to find a contradiction to the existence of a Turing machine that recognizes L.

Sample Solution

Suppose that L is Turing recognizable.
Then there exists a Turing machine T that recognizes L. 1

Then for the fixed enumerations of all turing machines, there must exist an index i such that T = Mi.
and thus for the fixed enumerations of all words, wi will be the corresponding string for Mi.
Now for the specific string wi, we have that T accepts wi if and only if wi ∈ L; that is,

T accepts wi ⇐⇒ Mi does not accept wi.

But since T = Mi, this means that

Mi accepts wi ⇐⇒ Mi does not accept wi.

which is a contradiction. Therefore such a TM can not exist. Hence, L is not Turing recongnizable.

Exercise 3: O-Notation Formal Proofs (1+2+2 Points)

Roughly speaking, the set O(f) contains all functions that are not growing faster than the function f
when additive or multiplicative constants are neglected. Formally:

g ∈ O(f) ⇐⇒ ∃c > 0, ∃M ∈ N, ∀n ≥ M : g(n) ≤ c · f(n)

For the following pairs of functions, state whether f ∈ O(g) or g ∈ O(f) or both. Proof your claims
(you do not have to prove a negative result /∈, though).

(a) f(n) = 100n, g(n) = 0.1 · n2

(b) f(n) =
3
√
n2, g(n) =

√
n

(c) f(n) = log2(2
n · n3), g(n) = 3n Hint: You may use that log2 n ≤ n for all n ∈ N.

1Which means that for any string w ∈ Σ∗, T accepts w if and only if w ∈ L; that is, for any string w ∈ Σ∗, there
exists an index k such that w := wk and

(
T accepts wk ⇐⇒ Mk does not accept wk

)
.

Sample Solution

(a) It is 100n ∈ O(0.1n2). To show that we require constants c,M such that 100n ≤ c · 0.1n2 for all
n ≥ M . Obviously this is the case for c = 1000 and M = 1.

(b) We have g(n) ∈ O(f(n)). Let c := 1 and M := 1. Then we have

g(n) ≤ c · f(n) (1)

⇔
√
n ≤ n2/3 (2)

⇔ 1 ≤ n1/6 (3)

⇔ 1 ≤ n (4)

The last inequality is satisfied because n ≥ M = 1.

(c) f(n) ∈ O(g(n)) holds. We give c > 0 and M ∈ N such that for all n ≥ M : log2(2
n · n3) ≤ c · n.

Indeed,

log2(2
n · n3)

= log2(2
n) + log2(n

3)

= n+ 3 · log2(n)
≤ n+ 3n = 4n.

Thus log2(2
n · n3) ≤ c · 3n for n ≥ M := 1 and c := 4/3.

We also have that g(n) ∈ O(f(n)) holds because

g(n) = 3n ≤ 3(n+ 3 · log2(n)) = 3(log2(2
n · n3)) = 3 · f(n).

Thus with c = 3 and for n ≥ M := 1 we have g(n) ≤ cf(n).

Exercise 4: Sort Functions by Asymptotic Growth (6 Points)

Give a sequence of the following functions sorted by asymptotic growth, i.e., for consecutive functions
g, f in your sequence, it should hold g ∈ O(f). Write “g ∼= f” if f ∈ O(g) and g ∈ O(f).

log2(n!)
√
n 2n log2(n

2)
3n n100 log2(

√
n) (log2 n)

2

log10 n 10100 · n n! n log2 n

n · 2n nn
√

log2 n n2

Sample Solution

For clarification, we write g ≲ f if g ∈ O(f), but not f ∈ O(g).√
log2 n ≲ log2(

√
n) ∼= log10 n

∼= log2(n
2)

≲ (log2 n)
2 ≲

√
n ≲ 10100n ≲ n log2 n

∼= log2(n!) ≲ n2 ≲ n100 ≲ 2n

≲ n · 2n ≲ 3n ≲ n! ≲ nn

