

Theoretical Computer Science - Bridging Course Sample Solution Exercise Sheet 7

Due: Tuesday, 17th of June 2025, 12:00 pm

Exercise 1: The Halting Problem Revisited (3+3 Points)

Show that both the halting problem and its special version are both undecidable.

(a) The *halting problem* is defined as

 $H = \{ \langle M, w \rangle \mid \langle M \rangle \text{ encodes a TM and } M \text{ halts on string } w \}.$

Hint: Assume H is decidable and try to reach a contradiction by showing that some known undecidable problem (cf. from the lecture) is decidable.

(b) The special halting problem is defined as

 $H_s = \{ \langle M \rangle \mid \langle M \rangle \text{ encodes a TM and } M \text{ halts on } \langle M \rangle \}.$

Hint: Assume that M is a TM which decides H_s and then construct a TM which halts iff M does not halt. Use this construction to find a contradiction.

Sample Solution

- (a) The solution is via the reduction method and thus using the hint. Assume H is decidable, hence there exists a TM D that decides on it. We know from the lecture that the A_{TM} problem is undecidable. We reach a contradiction by constructing a TM D' that decides on A_{TM} as follows. D'= "On input ⟨M, w⟩, where M is a TM and w is a string:
 1. Run TM D on ⟨M, w⟩, if D rejects, D' reject.
 2. If D accepts, simulate M on w until it halts. If M accepts, accept; if M rejects, D' reject." So D' is a decider for A_{TM}, but D' cannot exist. Thus, our assumption is false; hence H is undecidable.
- (b) The solution is via the diagonalization method and thus using the hint and similar to the lecture. Assume H_s is decidable, hence there exists a TM D that decides on it. We build a **Turing machine** T, which is unlike the lecture not a decider. We do so using the help of D to reach a contradiction. Note that the contradiction will stem from the idea that when feeding T its own encoding, we will reach a contradiction to some truth. However, our assumption yields that T should always be correct and never give us a contradiction, thus our assumption must be false and thus H is undecidable. We define T as follows.
 - T = "On input $\langle M \rangle$, where M is a TM:
 - 1. Run D on $\langle M \rangle$
 - 2. If D accepts, then T loop and if D rejects, then T halts and accepts.

Thus we have

$$D(\langle M \rangle) = \begin{cases} \text{accept} & \text{if } M \text{ halts } \langle M \rangle \\ \text{reject} & \text{if } M \text{ loops on } \langle M \rangle \end{cases}$$

And thus

$$T(\langle M \rangle) = \begin{cases} \text{loop} & \text{if } M \text{ halts } \langle M \rangle \\ \text{accept} & \text{if } M \text{ loops on } \langle M \rangle \end{cases}$$

We feed T its own encoding and reach a contradition as follows

$$T(\langle T \rangle) = \begin{cases} \text{loop} & \text{if } T \text{ halts } \langle T \rangle \\ \text{accept} & \text{if } T \text{ loops on } \langle T \rangle \end{cases}$$

Exercise 2: A Non-Turing Recongnizable Problem (3 Points)

Fix an enumeration of all Turing machines (that have input alphabet Σ): $\langle M_1 \rangle, \langle M_2 \rangle, \langle M_3 \rangle, \ldots$

Fix also an enumeration of all words over Σ : w_1, w_2, w_3, \ldots

Prove that language $L = \{w \in \Sigma^* \mid w = w_i, \text{ for some } i, \text{ and } M_i \text{ does not accept } w_i\}$ is not Turing recognizable.

Hint: Try to find a contradiction to the existence of a Turing machine that recognizes L.

Sample Solution

Suppose that L is Turing recognizable.

Then there exists a Turing machine T that recognizes L.¹

Then for the fixed enumerations of all turing machines, there must exist an index i such that $T = M_i$. and thus for the fixed enumerations of all words, w_i will be the corresponding string for M_i . Now for the specific string w_i , we have that T accepts w_i if and only if $w_i \in L$; that is,

T accepts $w_i \iff M_i$ does not accept w_i .

But since $T = M_i$, this means that

 M_i accepts $w_i \iff M_i$ does not accept w_i .

which is a contradiction. Therefore such a TM can not exist. Hence, L is not Turing recongnizable.

Exercise 3: O-Notation Formal Proofs

Roughly speaking, the set $\mathcal{O}(f)$ contains all functions that are not growing faster than the function f when additive or multiplicative constants are neglected. Formally:

(1+2+2 Points)

$$g \in \mathcal{O}(f) \iff \exists c > 0, \exists M \in \mathbb{N}, \forall n \ge M : g(n) \le c \cdot f(n)$$

For the following pairs of functions, state whether $f \in \mathcal{O}(g)$ or $g \in \mathcal{O}(f)$ or both. Proof your claims (you do not have to prove a negative result \notin , though).

- (a) $f(n) = 100n, g(n) = 0.1 \cdot n^2$
- (b) $f(n) = \sqrt[3]{n^2}, g(n) = \sqrt{n}$
- (c) $f(n) = \log_2(2^n \cdot n^3), g(n) = 3n$ *Hint: You may use that* $\log_2 n \le n$ *for all* $n \in \mathbb{N}$.

¹Which means that for any string $w \in \Sigma^*$, T accepts w if and only if $w \in L$; that is, for any string $w \in \Sigma^*$, there exists an index k such that $w := w_k$ and (T accepts $w_k \iff M_k$ does not accept w_k).

Sample Solution

- (a) It is $100n \in \mathcal{O}(0.1n^2)$. To show that we require constants c, M such that $100n \leq c \cdot 0.1n^2$ for all $n \geq M$. Obviously this is the case for c = 1000 and M = 1.
- (b) We have $g(n) \in O(f(n))$. Let c := 1 and M := 1. Then we have

 \Leftrightarrow

 \Leftrightarrow

$$g(n) \le c \cdot f(n) \tag{1}$$

$$\sqrt{n} \le n^{2/3} \tag{2}$$

 $\Leftrightarrow \qquad \qquad 1 \le n^{1/6} \tag{3}$

$$1 \le n \tag{4}$$

The last inequality is satisfied because $n \ge M = 1$.

(c) $f(n) \in O(g(n))$ holds. We give c > 0 and $M \in \mathbb{N}$ such that for all $n \ge M : \log_2(2^n \cdot n^3) \le c \cdot n$. Indeed,

$$\log_2(2^n \cdot n^3)$$

= $\log_2(2^n) + \log_2(n^3)$
= $n + 3 \cdot \log_2(n)$
 $\leq n + 3n = 4n.$

Thus $\log_2(2^n \cdot n^3) \le c \cdot 3n$ for $n \ge M := 1$ and c := 4/3.

We also have that $g(n) \in O(f(n))$ holds because

$$g(n) = 3n \le 3(n+3 \cdot \log_2(n)) = 3(\log_2(2^n \cdot n^3)) = 3 \cdot f(n).$$

Thus with c = 3 and for $n \ge M := 1$ we have $g(n) \le cf(n)$.

Exercise 4: Sort Functions by Asymptotic Growth (6 Points)

Give a sequence of the following functions sorted by asymptotic growth, i.e., for consecutive functions g, f in your sequence, it should hold $g \in \mathcal{O}(f)$. Write " $g \cong f$ " if $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(f)$.

$\log_2(n!)$	\sqrt{n}	2^n	$\log_2(n^2)$
3^n	n^{100}	$\log_2(\sqrt{n})$	$(\log_2 n)^2$
$\log_{10} n$	$10^{100} \cdot n$	n!	$n\log_2 n$
$n \cdot 2^n$	n^n	$\sqrt{\log_2 n}$	n^2

Sample Solution

For clarification, we write $g \leq f$ if $g \in \mathcal{O}(f)$, but not $f \in \mathcal{O}(g)$.