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Exercise 1: Class NPC (3+4+5 Points)

Recall: Let L1, L2 be languages (problems) over alphabets Σ1,Σ2. Then L1 ≤p L2 (L1 is polynomially
reducible to L2), iff a function f : Σ∗

1 → Σ∗
2 exists, that can be calculated in polynomial time and

∀s ∈ Σ∗
1 : s ∈ L1 ⇐⇒ f(s) ∈ L2.

Language L is called NP-hard, if all languages L′ ∈ NP are polynomially reducible to L, i.e.

L is NP-hard ⇐⇒ ∀L′ ∈ NP : L′ ≤p L.

The reduction relation ’≤p’ is transitive (L1 ≤p L2 and L2 ≤p L3 ⇒ L1 ≤p L3). Therefore, in order to
show that L is NP-hard, it suffices to reduce a known NP-hard problem L̃ to L, i.e. L̃ ≤p L.
Finally a language is called NP-complete (⇔: L ∈ NPC), if

1. L ∈ NP and

2. L is NP-hard.

Now, show that the following problems are in NPC

(a) IndependentSet :={⟨G, k⟩ |G has an independent set of size at least k }, where an independent
set is a subset of nodes of G such that no two nodes in the subset share an edge in G.

(b) Clique :={⟨G, k⟩ |G has a clique of size at least k }.

(c) HittingSet :={⟨U , S, k⟩ | universe U has subset of size at most k that hits all sets in S ⊆ 2U}.

(Bonus) DominatingSet := {⟨G, k⟩ |Graph G has a dominating set of size at most k}, where a do-
minating set is a subset of nodes of G such that every node in G is in the subset or has a neighbor in
the subset.

Hint: For all four parts, use the fact that VertexCover := {⟨G, k⟩ | Graph G has a vertex cover of
size at most k} ∈ NPC, where a vertex cover is a subset of nodes of G such that every edge of G is
incident to a node in the subset.

For the poly. transformation (≤p) you have to describe an algorithm (with poly. run-time!) that trans-
forms:
For part (a), an instance ⟨G, k⟩ of VertexCover into an instance ⟨G′, k′⟩ of IndependentSet s.t.
a vertex cover of size ≤ k in G becomes an independent set of G′ of size ≥ k′ vice versa(!)

For part (b), an instance ⟨G, k⟩ of VertexCover into an instance ⟨G′, k′⟩ of Clique s.t. a vertex
cover of size ≤ k in G becomes a clique of G′ of size ≥ k′ vice versa(!)



For part (c), an instance ⟨G, k⟩ of VertexCover into an instance ⟨U , S, k′⟩ of HittingSet, s.t. a
vertex cover of size ≤ k in G becomes a hitting set of U of size ≤ k′ for S and vice versa(!).

For the bonus, transfrom an instance ⟨G, k⟩ of VertexCover into an instance ⟨G′, k′⟩ of DominatingSet
s.t. a vertex cover of size ≤ k in G becomes a dominating set of G′ of size ≤ k′ vice versa(!)
Note that a dominating set is not necessarily a vertex cover (G = ({v1, v2, v3, v4}, {{v1, v2}, {v2, v3}, {v3, v4}}))
has the dominating set {v1, v4} which is not a vertex cover). Also a vertex cover is not necessarily a
dominating set (consider isolated notes).

Sample Solution

Note that we have already shown that Clique and HittingSet belong in NP, by engineering a
deterministic polynomial time verifier for them in the previous exercise sheet; and for the
IndependentSet problem, we can similar as the Clique problem show it is also in NP.
Hence, in order to show that all these three problems are also in NPC, we are only left to prove that
they are NP-hard problems; and we will do so by reducing a known NP-hard problem (e.g. vertex
cover as mentioned in the hint) to each of IndependentSet, Clique,and HittingSet problems in
polynomial time. We demonstrate how in the following.

(a) Polynomial Reduction of VertexCover to IndependentSet: We will create a polynomial
time reduction from vertex cover to independent set, proving that since vertex cover is NP-hard,
independent set must also be NP-hard. For this purpose we define a function f which maps
instances ⟨G, k⟩ of VertexCover to instances ⟨G′, k′⟩ of independent set (as usual we neglect
strings that do not represent well-formed instances), and is computable in polynomial time; thus,
we define f(⟨G, k⟩) = ⟨G′, k′⟩ := ⟨G,n − k⟩. This means that the reduction takes as an input an
undirected graph G = (V,E), where V is a set of nodes and E a set of edges defined over those
nodes, as well as a positive integer k and outputs the same graph G = (V,E) as well as the positive
integer k′ := n− k.

Moreover, this reduction can be done in polynomial time by copying the same graph i.e. copy the
vertex set V and edge set E of the input G as is; as well as outputting the positive integer n− k.
All these operations can be done in polynomial time.

It remains to prove the equivalency

⟨G, k⟩ ∈ VertexCover ⇐⇒ f(⟨G, k⟩) = ⟨G,n− k⟩ ∈ IndependentSet.

To do so, we observe the following:

“G has a vertex cover of size at most k” ⇔ “G has an independent set of size at least n− k”

And the formal proof is the following:

=⇒ : We suppose that ⟨G, k⟩ ∈ VertexCover, this means that we suppose that G has a
vertex cover S ⊆ V of size at most k. Then for all u, v ∈ V , if (u, v) ∈ E, then u ∈ S or v ∈ S, or
both, by definition of the vertex cover that it needs to cover all edges. Now consider S′ := V \S .
Clearly |S′| is at least n−k. Also, notice that S′ is an independent set of G i.e. there are no edges
connecting any two nodes in S′, since there cannot exist an edge {u, v} in G where u ∈ S′ and
v ∈ S′, else we reach a contradiction to that S is a vertex cover. Therefore, S′ is an independent
set in G of size at least n− k. Thus ⟨G,n− k⟩ ∈ IndependentSet.

⇐= : W suppose that the transformed input f(⟨G, k⟩) = ⟨G,n − k⟩ ∈ IndependentSet, this
means we suppose that G = (V,E) has an indepedent set S ⊆ V of size at least n − k. Thus,



V \S is a vertex cover in G, else there exists an edge {u, v} ∈ E which is not covered by V \S i.e.
both u and v are not in V \S, thus u, v ∈ S. This is a contradiction since u, v ∈ S, {u, v} ∈ E
and S is an independent set in G. Hence, G has a vertex cover that is V \S of size at most k, thus
⟨G, k⟩ ∈ VertexCover

Therefore, we have shown that VertexCover can be reduced in polynomial time to Clique,
and hence Clique is NP-hard.

In summary: IndependentSet ∈ NP and NP-hard, thus IndependentSet ∈ NPC.

(b) Polynomial Reduction of VertexCover to Clique: We will create a polynomial time reduc-
tion from vertex cover to clique, proving that since vertex cover is NP-hard, clique must also be
NP-hard. For this purpose we define a function f which maps instances ⟨G, k⟩ of VertexCover
to instances ⟨G′, k′⟩ of Clique (as usual we neglect strings that do not represent well-formed in-
stances), and is computable in polynomial time; thus, we define f(⟨G, k⟩) = ⟨G′, k′⟩ := ⟨G,n− k⟩,
where G is the complement graph of G. This means that the reduction takes as an input an undi-
rected graph G = (V,E), where V is a set of nodes and E a set of edges defined over those nodes, as
well as a positive integer k and outputs the complement graph G = (V,E) where V is the same set
V of G, the set of all edges that don’t exist in G defined by E = {(u, v) : u, v ∈ V, u ̸= v, (u, v) /∈ E}
as well as the positive integer k′ := n− k.

Moreover, this reduction can be done in polynomial time by generating the complement graph
as follows: copy the vertex set V of the input G as is and go through each pair of nodes in G :
generate an edge for G only if there is no edge between the pair in G; as well as outputting the
positive integer n− k . All these operations can be done in polynomial time.

It remains to prove the equivalency

⟨G, k⟩ ∈ VertexCover ⇐⇒ f(⟨G, k⟩) = ⟨G,n− k⟩ ∈ Clique.

To do so, we observe the following:

“G has a vertex cover of size at most k” ⇔ “G has a clique of size at least n− k”

And the formal proof is the following:

=⇒ : Suppose that G has a vertex cover S ⊆ V of size at most k (a yes instance of VertexCo-
ver). Then for all u, v ∈ V , if (u, v) ∈ E, then u ∈ S or v ∈ S, or both, by definition of the vertex
cover that it needs to cover all edges. Now consider S′ := V \S . Clearly |S′| is at least n−k. Also,
notice that S′ is an independent set of G i.e. there are no edges connecting any two nodes in S′,
since there cannot exist an edge {u, v} in G where u ∈ S′ and v ∈ S′, else we reach a contradiction
to that S is a vertex cover. Moreover, if we consider the graph G = (V,E), we deduce that for all
u, v ∈ S′, {u, v} ∈ E. Therefore, S′ is a clique in G of size at least n−k (a yes instance of Clique).

⇐= : Suppose G = (V,E) has a clique S ⊆ V of size at least n− k. So all nodes in the clique S
are connected to each other by an edge in E. Hence, S makes up an independent set in G = (V,E).
Thus, V \S is a vertex cover in G, else there exists an edge {u, v} ∈ E which is not covered by V \S
i.e. both u and v are not in V \S, thus u, v ∈ S. This is a contradiction since u, v ∈ S, {u, v} ∈ E
and S is an independent set in G. Hence, G has a vertex cover that is V \S of size at most k.

Therefore, we have shown that VertexCover can be reduced in polynomial time to Clique,
and hence Clique is NP-hard.

In summary: Clique ∈ NP and NP-hard, thus Clique ∈ NPC.



(c) Polynomial Reduction of VertexCover to HittingSet: We will create a polynomial time
reduction from vertex cover to hitting set, proving that since vertex cover is NP-hard, hitting
set must also be NP-hard. We define a function f that can be computed in polynomial time and
transforms an instance ⟨G, k⟩ of VertexCover into an instance ⟨U , S, k′⟩ of HittingSet; thus
for graph G = (V,E), we define f(⟨G, k⟩) = ⟨U , S, k′⟩ := ⟨V,E, k⟩. This means that the reduction
takes as input an undirected graph G = (V,E), where V is a set of nodes and E a set of edges
defined over those nodes, as well as a positive integer k and outputs the set V , the collection
E = {e1, e2, . . . , en} of subsets of V and the positive integer k. Moreover, this reduction takes
time linear in the size of the input (all it does is copy the input to the output), therefore it takes
polynomial time. It remains to prove the equivalency

⟨G, k⟩ ∈ VertexCover ⇐⇒ f(⟨G, k⟩) = ⟨V,E, k⟩ ∈ HittingSet,

where G = (V,E). This means we have to prove that

“G has a vertex cover of size at most k” ⇐⇒ “(V,E) has a hitting set of size at most k”

We prove this in the following:

“G has a vertex cover of size at most k” ⇔
∃V ′ ⊆ V : |V ′| ≤ k and ∀ edge ei = {ui, vi} ∈ E, ui ∈ V ′ or vi ∈ V ′ ⇔
∃V ′ ⊆ V : |V ′| ≤ k and ∀ subset ei in collection E ∃c ∈ ei : c ∈ V ′ ⇔
“(V,E) has a hitting set of size at most k”

Therefore, we have shown thatVertexCover can be reduced in polynomial time toHittingSet,
and hence HittingSet is NP-hard.

In summary: HittingSet ∈ NP and NP-hard, thus HittingSet ∈ NPC.
Note: one might notice that this reduction was rather straightforward. This makes sense, since
vertex cover is a special version of hitting set, where each subset Si in the collection S has exactly
two elements of U . Obviously, no problem can be harder than its generalization and since vertex
cover is NP-hard, hitting set (as a generalization of vertex cover) must also be NP-hard.

(Bonus) Guess and Check: we show that DominatingSet ∈ NP. Consider the following verifier
for DominatingSet on input ⟨⟨G, k⟩, D⟩, that verifies in polynomial time that G has a dominating
set of size at most k, where the idea of the certificate D is the dominating set. Let G = (V,E), where
n := |V |,m := |E|.
The verifier first tests if D has at most k different nodes from G with O(|D|+|D|·n+|D|2) comparisons
(similar to the Clique problem in a prev. sheet), then it tests if all nodes are inD or adjacent to a node
in D in O(n(|D|+m)) comparisons (or you can say O(nm) comparisons, since to do this second test
|D| ≤ k ≤ n). If both these tests pass, accept; else reject. Since the certificate has polynomial length
in the input size, therefore the total running time is polynomial in the input size. So DominatingSet
has a polynomial time verifier. Therefore, DominatingSet is in NP.

Polynomial reduction of VertexCover to DominatingSet: we show that DominatingSet is
NP-hard.
We define a function f that can be computed in polynomial time and transforms an instance ⟨G, k⟩ of
DominatingSet into an instance f(⟨G, k⟩) = ⟨G′, k⟩, such that G has a vertex cover of size at most
k, iff G′ has a vertex cover of size at most k, i.e.,

⟨G, k⟩ ∈ VertexCover ⇐⇒ f(⟨G, k⟩) = ⟨G′, k⟩ ∈ DominatingSet.

For G = (V,E) we construct G′ = (V ′, E′) as follows. Initially, we set V ′ := V,E′ := E. For each edge
{u, v} ∈ E we add an additional node w to V ′ and add the edges {u,w}, {v, w} to E′ (i.e., G′ has a
triangle with nodes u, v, w). Furthermore we remove all isolated nodes from V ′. The construction of



G′ can be accomplished, by generating V ′ and E′, in O((m+n)+nm+m) (i.e. O(nm)) comparisons.
Indeed, it takes O((m+n)+nm) comparisons to generate V ′, since we add O(m) new nodes alongside
the old ones and remove at most O(n) nodes ( for each node in V we can check if it is isolated in
O(m) comparisons); moreover, we can generate E′ in O(m) comparisons as we add at most O(m) new
edges ( for each corresponding edge in E′, we add 2 new edges). It remains to prove the equivalency
stated above.

=⇒ : Let (G, k) be such, that G has a vertex cover C of size at most k. Let D := C ∩ V ′ which
corresponds to C but without isolated nodes. We have |D| ≤ |C| ≤ k since D is a subset of C.
It remains to show that D is a dominating set. We know that for every edge {u, v} ∈ E either u ∈ C
or v ∈ C (or both). Therefore, every node w that was added to V ′ during the construction due to an
edge {u, v} ∈ E is adjacent to either u ∈ D or v ∈ D. All other nodes in v ∈ V ′ have an incident edge
{u, v} ∈ E ⊂ E′ since we removed isolated nodes from V ′. Therefore v ∈ C (and thus v ∈ D), or v is
adjacent to a node u in C (hence dominated by one in D).
⇐= : Let the transformed instance f(⟨G, k⟩) = ⟨G′, k′⟩ be such that G′ has a dominating set D with
|D| ≤ k. We show that we can construct a vertex cover C of size at most k in the original graph G
from D. Let {u, v} be an arbitrary edge of G. Due to the way G′ was constructed, it has a triangle
formed by the nodes u, v, w where w is only connected to u and v.
This means that at least one of the three cases holds: w is dominated by u ∈ D or by v ∈ D or it
holds that w ∈ D. In the first two cases we add u or v respectively to C (whichever was in D). In the
third case we simply add one of the two nodes u or v instead. In all cases {u, v} is covered. Since we
add at most |D| ≤ k nodes to C it holds that |C| ≤ k.
In summary: DominatingSet ∈ NP and NP-hard, thus DominatingSet ∈ NPC.

Exercise 2: Complexity Classes: Big Picture (2+3+3 Points)

(a) Why is P ⊆ NP?

(b) Show that P ∩NPC = ∅ if P ≠ NP.
Hint: Assume that there exists a L ∈ P ∩NPC and derive a contradiction to P ≠ NP.

(c) Give a Venn Diagram showing the sets P,NP,NPC for both cases P ≠ NP and P = NP.
Remark: Use the results of (a) and (b) even if you did not succeed in proving those.

Sample Solution

(a) If L ∈ P there is a deterministic Turing machine that decides L in polynomial time. Then L ∈ NP
simply by definition since a deterministic Turing machine is a special case of a non-deterministic
one.

(b) As the hint suggests we assume that there is a language L which is NP-complete and simulta-
neously solvable in polynomial time by a Turing machine. We use this language L to show that
NP ⊆ P, which together with (a) implies NP = P, i.e., a contradiction to our premise NP ̸= P.
Hence L cannot exist if NP ̸= P.

So let L′ ∈ NP. We want to show that L′ is in P to obtain the contradiction. Since L is also
NP-hard, we can solve the decision problem L′ via L by using the polynomial reduction L′ ≤p L.
In particular for any string s ∈ L′ we have the equivalency s ∈ L′ ⇐⇒ f(s) ∈ L, where f is
induced by the reduction.

We construct a Turing machine for L′ that runs in poly. time. For instance s it first computes f(s)
in polynomial time and then uses the Turing machine for L as a subroutine to return the answer
of f(s) ∈ L in polynomial time. In total, we require only polynomial time to decide s ∈ L′ which
means L′ ∈ P.



(c) See Figure 3 in the next page. For the case P = NP, the notion of NP-hardness becomes utterly
meaningless since the class NP can be polynomially reduced to every other language except Σ∗

and ∅. In order to show that L′ ≤p L for an L ̸= Σ∗, ∅ and for all L′ ∈ NP = P, we need show
that there is a polynomially computable mapping f such that ∀s ∈ Σ∗ : s ∈ L′ ⇔ f(s) ∈ L.

But such a mapping f always exists for L ̸= Σ∗, ∅. We simply have to use a known ’yes-instance’
y ∈ L and a ’no-instance’ n /∈ L. Then we define for s ∈ Σ∗ that f(s) := y if s ∈ L′ and f(s) := n
if s /∈ L′. This obviously fulfills the above equivalency. Moreover f is polynomially computable
since we can find out whether s ∈ L′ in polynomial time.
So for example, if we take C to be the problem of determining if a number is prime. And we reduce
the DominatingSet problem to it. We solve the DominatingSet problem, which we can do in
polynomial time since we assume P = NP . If we find that a dominating set of k nodes exists,
then we select 3 as input to C. If we find that no dominating set of k nodes exists, then we select
9. This of course fails if C always returns a ’yes’ for every instance (i.e. Σ∗), or always returns a
’no’ for every instance (i.e. ϕ).
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Abbildung 1: P ≠ NP

P = NP
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Abbildung 2: P = NP

Abbildung 3: Venn-Diagram of the Language classes P,NP,NPC,NP-hard.


