

Chapter 0 Introduction

Algorithm Theory WS 2013/14

Fabian Kuhn

About myself...

Fabian Kuhn

- PhD: ETH Zurich (2002)
- Afterwards: Microsoft Research, ETH, MIT, U. Lugano (CH)
- In Freiburg since April 2012
 Chair of Algorithms and Complexity
- Background/Research:

Theory, algorithms (esp. distributed algorithms)

About the Course

Design and analysis techniques for algorithms

- Selection of (possible) topics:
 - Divide and conquer
 - Greedy
 - Dynamic programming
 - More on heaps, hash tables, ...
 - Amortized analysis
 - Graph algorithms
 - Randomization
 - Approximation algorithms
 - Competitive analysis
 - Parallel algorithms

Requirements

- I assume that you have basic algorithms and data structures knowledge as well as some mathematical maturity
 - E.g., from the Bachelor course Informatik 2
- In particular, you should be (at least partly) familiar with
 - Math. induction, basic combinatorics & (discrete) probability theory, ...
 - Big-O notation and Landau notation more generally
 - Searching and Sorting (binary search, mergesort, quicksort)
 - Binary search trees, balanced binary search trees
 - Priority queues (heaps)
 - Hash tables
 - Basic graph-theoretic definitions
 - Representations of graphs
 - Basic graph algorithms: traversal (depth-first, breadth-first), minimum spanning trees, shortest paths

Literature

- J. Kleinberg, E. Tardos
 Algorithm Design
 Addison Wesley, 2005
- T. Cormen, C. Leiserson, R. Rivest, C. Stein Introduction to Algorithms, Third Edition, MIT Press, 2009
- T. Ottmann, P. Widmayer
 Algorithmen und Datenstrukturen
 4th Edition, Spektrum Akademischer Verlag,
 Heidelberg, 2002
- Original literature

Lecture

Lecture (101-00-026)

- Tuesday 16:15 18:00 (should we skip the break?)
- Thursday 10:15 12:00
- Roughly once every 2 weeks, there will be exercise tutorials

Language

Lectures will be in English

General Remarks

Theory lecture (there will be math)

Recordings

- Lectures will be recorded
- No guarantee that there's always a recording!

Web Page

http://ac.informatik.uni-freiburg.de

- → Teaching → WS 2013/14 → Algorithm Theory
- We will publish all important information there!
- Check the web page regularly!
- First recordings will be published as soon as the Electure page of the course is set up

Exercises

- There will be (theoretical) exercises to practice the material
 - We will provide sample solutions
- 7-8 problem sets: (roughly) one every two weeks
- Hand-in electronically by email
 - We will grade solutions that are handed in in time
- It is OK to work in groups on the exercises
 - Please only hand in the same solution once!
- It is **not necessary** to hand in exercises in order to be admitted to the exam
- Important to do the exercises!
 - You're highly encouraged to hand them in and have them corrected

Exercise Tutorials

Tentatively (details follows)

- Roughly bi-weekly, normal lecture hours
 - First problem set will go out on Thursday
 - I will be away in the 4^{th} week (Nov 12/14):
 We'll have only lectures in weeks 1-3 and exercise tutorials on both Tue and Thu in the 4^{th} week
- Details regarding times, ex. groups, etc. follow next Thursday
 - Probably 3 groups, at least one in English
 - Also check the web page!
- What is better? Tuesday or Thursday?

Exam

Final Exam

- Final exam will take place after the semester (probably end of February)
 - Exact date to be announced
- No conditions for admission to the exam!
 - Sufficient to sign up for the exam!

Midterm Exam

- Will take place in December
- Same style as final exam
 - Exact date and rules will be announced
- Counts 30% towards final grade if it is better than the final exam
 - If the final exam is better, the grade of the final exam is your final grade