)

Chapter 4
Data Structures

Algorithm Theory
WS 2013/14

Fabian Kuhn

UNI

FREIBURG

Fibonacci Heaps: Marks

UNI
I

FREIBURG

Cycle of a node:

1. Node v is removed from root list and linked to a node
v.mark = false

2. Child node u of v is cut and added to root list
v.mark = true

3. Second child of v is cut
node v is cut as well and moved to root list

The boolean value v. mark indicates whether node v has lost a
child since the last time v was made the child of another node.

Algorithm Theory, WS 2013/14 Fabian Kuhn 2

Potential Function

|
FRE:BURG

UNI

System state characterized by two parameters:
e R:number of trees (length of H.rootlist)
e M: number of marked nodes that are not in the root list

Potential function: / l!

Example:

e R=7,M=2 - d=11

Algorithm Theory, WS 2013/14 Fabian Kuhn 3

Actual Time of Operations

UNI

FREIBURG

e Operations: initialize-heap, is-empty, insert, get-min, merge
actual time: 0(1)

— Normalize unit time such that

Linit) tis—empty: Linserts tget—min' tmerge <1

e Operation delete-min:
— Actual time: O(Iength of H.rootlist + D(n))

— Normalize unit time such that
tgel—min < D(n) + length of H.rootlist

e QOperation descrease-key:

— Actual time: O (length of path to next unmarked ancestor)
— Normalize unit time such that

taecr—key < length of path to next unmarked ancestor

Algorithm Theory, WS 2013/14 Fabian Kuhn

Amortized Time of Delete-Min

UNI
FREIBURG

Assume that operation i is a delete-min operation:

Actual time: t; < D(n) + |H.rootlist|

—_— Q; = t —ka (bw

Potential function ® = R + 2M:
* R:changesfrom H.rootlist to at most D(n) ‘F—

[. :
e M: (# of marked nodes that are not in the root list)
— no new marks

— if node v is moved away from root list, v. mark is set to false
—> value of M does not increase! V\

M; <Ml 1) R, < R;_, +t D(n) — |H. rootllstl
CI) <P, +\D(n) — |H rootlist|

—

LY@ “"’WA\ 2
a; = ti + (Ei (Di—l < ZD(n)

Algorithm Theory, WS 2013/14 Fabian Kuhn 5

—

Amortized Time:

UNI

Amortized Time of Decrease-Key

FREIBURG

Assume that operation i is a decrease-key operation at node u:

Actual time: t; < length of path to next unmarked ancestor v

=
—_—

Potential function ® = R +@§M: L= by
e Assume, node u and nodes uy, ..., U, are moved to root list

— U4, ..., Uy are marked and moved to root list, v. mark is set to true
e > k marked nodes go to root list, < 1 node gets newly marked

R grows by < k+ 1, M grows by 1 and is decreased by = k

3::/ Ri<Ri1+k+1, M;<M,_+1-k
k

O, <@+ (k+1D)-20k—D =D, +3 -k

.
}A ortized time:

B deer. s a,=t;+®,—P;_ <k+1+3-k=4
<l 4 51"4

Algorlthm Theory, WS 2013/14 Fabian Kuhn 6

A\

W

F 2

Complexities Fibonacci Heap

UNI

FREIBURG

o
—_—

Initialize-Heap: O(1) (

Is-Empty:
Insert:
Get-Min:

Delete-Min:

0(1)
0(1)
0(1)

0(D(n))

‘> amortized

_e_Decrease-Key: 0(1)

)

O<v\ £ w Dw >

-—

e Merge (heaps of sizemandn, m < n): 0(1)

 How large can D(n) get?

Algorithm Theory, WS 2013/14

Fabian Kuhn

FREIBURG

Rank of Children

UNI

Lemma:

Consider a node v of rank k and let uq, ..., u;be the children of v
in the order in which they were linked to v. Then,

rank(u;) > i — 2.
—~— ~————

—_—

Proof: v .
o 0{2 =1

U, \\o‘ \Morlue{

\

ol .
2d-1 2 -2

S — “ B

Algorithm Theory, WS 2013/14 Fabian Kuhn 8

Size of Trees

UNI
I

FREIBURG

Fibonacci Numbers:

FO — O, F1 — 1, Vk = Z:Fk — Fk—l + Fk_z
% TR —_
AAVERTA TR Y %, Hy- -

Lemma:
In a Fibonacci heap, the size of the sub-tree of a node v with

rank k is at least| F ;5. | L .
&7/ +k+z I
Proof: N —

e Si:minimum size of the sub-tree of a node of rank k
S°$\} 3]:'"(Z

Algorithm Theory, WS 2013/14 Fabian Kuhn

Size of Trees

UNI
FREIBURG

k=2
So=1, S =2 Vk22:5k22+25i<f—
- i=0

e (Claim about Fibonacci numbers:

- =0
q:‘@;cﬁ;'/ql"f&..;*k,z l
Lot T = 4 2h=l4%=)
dep 0 T, = H, TR
’__ﬁ;) b+ bt L
=F +[+ ST =1 +2%
) (=0 —°

Algorithm Theory, WS 2013/14 Fabian Kuhn 10

Size of Trees

UNI
I

FREIBURG

k—2
SO=1,51=2,Vk22:Sk22+ZSi, Fk+2=1+zFi
) i=0 =

e Claim of Iemma:\Sk = Fk+2] -
lJ. &«k_. /
beser S,z F, = S =2
L2 4,
S_ﬁ‘. Sk>/ Z + é%t 2 + é L l l
_— FT, T4, 4 o 49,
=7 + ZT i : b
jz
oy =
S - l + }%:F:):'ﬁ'tl
Z 2 —_—

Algorithm Theory, WS 2013/14 Fabian Kuhn 11

UNI

Size of Trees

FREIBURG

Lemma:
In a Fibonacci heap, the size of the sub-tree of a node v with rank k

is at least Fj, ».
i

Theorem:
The maximum rank of a node in a Fibonacci heap of size n is at most

D(n) = 0(logn).

Proof:
e The Fibonacci numbers grow exponentially:

1 (/1445 [1-v5)\"
TR (__g_) (57

e ForD(n) = k, we need n > Fj., nodes.

Algorithm Theory, WS 2013/14 Fabian Kuhn 12

Summary: Binomial and Fibonacci Heaps

UNI
FREIBURG

Binomial Heap Fibonacci Heap

initialize 0(1) 0o(1) ow
insert O(logn) O(1) a(w
get-min 0(1) 0(1) &(v)
delete-min O(log n) O(logn) >'<<9(u)“"—
decrease-key O(logn) 0(1) *O(m)
merge O(logn) 0(1)
is-empty 0(1) N 0(1) O)

@
_% arlnortizedﬂej

@% OQW\ " V\(QS ’3 O(\M»Q@étﬂ

Algorithm Theory, WS 2013/14 Fabian Kuhn 13

UNI

Minimum Spanning Trees

FREIBURG

|

Prim Algorithm:

Start with any node v (v is the initial component)

2. In each step:
Grow the current component by adding the minimum weight
edge e connecting the current component with any other node

Kruskal Algorithm:

1. Start with an empty edge set

2. In each step:
Add minimum weight edge e such that e does not close a cycle

Algorithm Theory, WS 2013/14 Fabian Kuhn 14

Implementation of Prim Algorithm

UNI

FREIBURG

Start at node s, very similar to Dijkstra’s algorithm: S.

1. Initialize d(s) = 0andd(v) = oo forallv #s
:.—__—_—?% —
2. All nodes #Za are unmarked

3. Get unmarked node u which minimizes d(u):

—

4, Foralle ={u,v} € E,dw) = min{gl=(lz),w(e)}

——

U.Q‘(kg %QEPQ:

M+\«9vﬂ
X o

|
. "QP” Buodss

5. mark node u

6. Until all nodes are marked

Algorithm Theory, WS 2013/14 Fabian Kuhn 15

Implementation of Prim Algorithm

_—

Implementation with Fibonacci heap:
* Analysis identical to the analysis of Dijkstra’s algorithm:

O (n) insert and delete-min operations

O (m) decrease-key operations

e Runningtime: O(m + nlogn)

Algorithm Theory, WS 2013/14 Fabian Kuhn

UNI
I

FREIBURG

Kruskal Algorithm

UNI
FREIBURG

1 - . 1. Start with an
empty edge set

9 > 2. In each step:
a2 23 Add minimum
weight edge e
7 9 ’8 ‘ such that e does
16 31 not close a cycle
17 19 A
12

20

Algorithm Theory, WS 2013/14 Fabian Kuhn 17

Implementation of Kruskal Algorithm

UNI
I

FREIBURG

1. Go through edges in order of increasing weights

_50*}' @Q«}ﬁg ‘7(] wdffv‘l— O(w Q‘*‘d V\)

—_

2. For each edge e:

if e does not close a cycle then

waed O Q_-Qg\\a\&ull wwo o D&Q& c«rL.MM
Q. cloges a aOcCSk

add e to the current solution

u?&q'\'e, ﬂala Slﬂkci‘

Algorithm Theory, WS 2013/14 Fabian Kuhn

18

Union-Find Data Structure

UNI
FREIBURG

Also known as Disjoint-Set Data Structure...

Manages partition of a set of elements
e set of disjoint sets

Operations:

 make_set(x): create a new set that only contains element x

—
 find(x): return the set containing x

—

e union(x,y): merge the two sets containing x and y

g————

Algorithm Theory, WS 2013/14 Fabian Kuhn 19

Implementation of Kruskal Algorithm

UNI
I

FREIBURG

1. Initialization:

For each node v: make_set(v)

-

W %MBQI'B'« 3@"%

2. Go through edges in order of increasing weights:
Sort edges by edge weight

3. Foreach edge e = {u, v}:
if find(u) # find(v) then

add e to the current solution

union(u, v)

Algorithm Theory, WS 2013/14

gt

uw\\ou H

| ——

Fabian Kuhn

(TA««Q-—S& :

® @
@@@
& &

h

Zw

w—\

Ve ko&)
WA QJ‘AS

20

UNI

Managing Connected Components

FREIBURG

e Union-find data structure can be used more generally to manage
the connected components of a graph

... if edges are added incrementally

 make_set(v) for every node v
e find(v) returns component containing v

e union(u,v) merges the components of u and v
(when an edge is added between the components)

e (Can also be used to manage biconnected components

-

Algorithm Theory, WS 2013/14 Fabian Kuhn 21

UNI

Basic Implementation Properties

FREIBURG

Representation of sets:

e Everyset S of the partition is identified with a representative,
by one of its members x € S .

Operations:
 make_set(x): x is the representative of the new set {x}

* find(x): return representative of set S, containing x

 union(x,y): unites the sets S, and S,, containing x and y and
returns the new representative of 5, U S,,

Algorithm Theory, WS 2013/14 Fabian Kuhn 22

Observations

UNI
FREIBURG

Throughout the discussion of union-find:

* total number of make_set operations

* m total number of operations (make_set, find, and union)

Clearly:

e MmM=2n

* There are at most n — 1 union operations

Remark:

* We assume that the n make_set operations are the first n
operations

— Does not really matter...

Algorithm Theory, WS 2013/14 Fabian Kuhn 23

Linked List Implementation

UNI
I

FREIBURG

Each set is implemented as a linked list:

e representative: first list element (all nodes point to first elem.)
in addition: pointer to first and last element

i 1 | J ‘
T 5 —12—>8 —43— 1 *—

— ? ‘)
| e (19)
v | |
—T1>9 —15— 7
—_— A

e sets: {1,5,8,12,43},{7,9,15}; representatives: 5,9

Algorithm Theory, WS 2013/14 Fabian Kuhn 24

Linked List Implementation

UNI
I

FREIBURG

make_set(x):
* (Create list with one element:

time: 0(1) — > x

find(x):

* Return first list element: ,h| | |

time: 0(1)

>y—>a—>x—>b

Algorithm Theory, WS 2013/14 Fabian Kuhn

25

Linked List Implementation

UNI
FREIBURG

union(x, y):
. Appenoﬂist of y to list of x:

{ | | § | |
Taéb—)@w; é——)d—)e—)%‘i
V) | | | Q @ @

——>a—>b—>x—>c@d—>e—>y
4

Time: O(length of list of y)

—_— e —
Algorithm Theory, WS 2013/14 Fabian Kuhn 26

RG

Cost of Union (Linked List Implementatlon)

Total cost for n — 1 union operations can be 0(n?):

* make_set(x,), make_set(x,), ..., make_set(x,,), 2
uniongcn_l, xn), union(x,,_, X,—_1), ..., union(xy, x,)

R R B R @ﬁ—i)??

HtQ)ttcL 2 24...4+ u-\ = 9(0\?")

—

—

T 1
= ~ O

Algorithm Theory, WS 2013/14 Fabian Kuhn 27

UNI

Weighted-Union Heuristic

FREIBURG

* In a bad execution, average cost per union can be 0(n)

 Problem: The longer list is always appended to the shorter one

Idea:
* |n each union operation, append shorter list to longer one!

Cost for union of sets S, and Sy;: O(min{|S,|,|S,|})

Theorem: The overall cost of m operations of which at most n are
make_set operations is O(m + nlogn). .

O we + Woy=)

Algorithm Theory, WS 2013/14 Fabian Kuhn 28

Weighted-Union Heuristic

|
FRE:BURG

UNI

Theorem: The overall cost of m operations of which at most n
are make_set operations is O(m + 2log n).

Proof: W
\Mlu_-sd(@-‘mo&! Q)

/\‘Aﬂ(Wby cost = @(’*ol—a\ 4k o{, f)eﬁu\m tt&/'tfeccl‘\&"?b
O(V\- <H’ vedie, 7 Q[Qw.mo

e
é-.QaGm

DQ‘D—D—ﬂD—Gx Qﬂ&f L eedin DQ XS fo“*l‘U

L sihof x as 2 75 clowsde

"

Algorithm Theory, WS 2013/14 Fabian Kuhn 29

Disjoint-Set Forests

UNI

FREIBURG

e Represent each set by a tree

e Representative of a set is the root of the tree

Algorithm Theory, WS 2013/14 Fabian Kuhn

@

30

Disjoint-Set Forests

UNI
I

FREIBURG

make_set(x): create new one-node tree @

find(x): follow parent point to root
(parent pointer to itself)

Algorithm Theory, WS 2013/14

31

Bad Sequence

UNI
FREIBURG

Bad sequence leads to tree(s) of depth ©(n)

* make_set(x,), make_set(x,), ..., make_set(x,,),
union(xy, x,), union(xy, x3), ..., union(x¢, x,,)

p—

Algorithm Theory, WS 2013/14 Fabian Kuhn 32

UNI

Union-By-Size Heuristic

Union of sets $; and S,:

* Root of trees representing S; and S,: r; and

e W.lo.g., assume that |S;| = |5,]

e RootofS; US,: 1y (1, is attached to 7y as a new child)

Theorem: If the union-by-size heuristic is used, the worst-case
cost of a find-operation is O(logn)

’\'\QO.W‘IXR'\ &', @CQWJMLS («o‘s &QFM £ a/,@ap(q_>

Proof:

Similar Strategy: union-by-rank

e rank: essentially the depth of a tree

Algorithm Theory, WS 2013/14 Fabian Kuhn 33

FREIBURG

Union-Find Algorithms

UNI
FREIBURG

Recall: m operations, n of the operations are make_set-operations

Linked List with Weighted Union Heuristic:
 make_set: worst-case cost 0(1)

e find : worst-case cost O(1)

e union :amortized worst-case cost O (logn)

—

Disjoint-Set Forest with Union-By-Size Heuristic:

 make_set: worst-case cost 0(1)

e find : worst-case cost O (logn)
e union :worst-case cost O(logn)

Can we make this faster?

Algorithm Theory, WS 2013/14 Fabian Kuhn

34

Path Compression During Find Operation

UNI
I

FREIBURG

1. ifa # a.parent then

2. a.parent = find(a.parent)
3. return a.parent

Algorithm Theory, WS 2013/14 Fabian Kuhn 35

Complexity With Path Compression

UNI
FREIBURG

When using only path compression (without union-by-rank):

m: total number of operations

. iof which are find-operations

 n of which are make_set-operations
- at most n — 1 are union-operations

Total cost: O (m +f- [log2+f/n nD =0(m+ f -logyym, n)
[——=—

Algorithm Theory, WS 2013/14 Fabian Kuhn 36

Union-By-Size and Path Compression

Theorem:

Using the combined union-by-rank and path compression
heuristic, the running time of m disjoint-set (union-find)
operations on n elements (at most n make_set-operations) is

O(m - a(m,n)),

e ————

Where a(m,n) is the inverse of the Ackermann function.
‘%’m«» ey\-ﬂw&\? 5"’"}‘%

o ki &
A (\1 /

Algorithm Theory, WS 2013/14 Fabian Kuhn

UNI
I

FREIBURG

Ackermann Function and its Inverse

UNI

FREIBURG

Ackermann Function:

Fork,f > 1,

(2¢, ifk=1,¢>1
Ak, ¢) ={A(k—1,2), ifk>1¢=1
— Ak-1,Akt-1)), ifk>1¢>1

Inverse of Ackermann Function:

a(m,n) = min{k > 1| A(k,|"/5]) > log, n}

Algorithm Theory, WS 2013/14 Fabian Kuhn

38

Inverse of Ackermann Function

|
FRE:BURG

UNI

* a(mn) =minfk = 1| A(k, [""/n]) > log, n}
m=>n= Ak, |™/n]) = A(k,1) = a(m,n) < min{k > 1|A(k, 1) > logn}

e A(1,%)=2¢ A(k,1)=Ak—1,2),
A(k,£) = A(k — 1,A(k, ¢ — 1))

Algorithm Theory, WS 2013/14 Fabian Kuhn 39

