

Chapter 4 Data Structures

Algorithm Theory WS 2013/14

Fabian Kuhn

Fibonacci Heaps: Marks

Cycle of a node:

1. Node v is removed from root list and linked to a node

v.mark = false

2. Child node u of v is cut and added to root list

v.mark = true

3. Second child of v is cut

node v is cut as well and moved to root list

The boolean value v. mark indicates whether node v has lost a child since the last time v was made the child of another node.

Potential Function

System state characterized by two parameters:

- R: number of trees (length of H. rootlist)
- M: number of marked nodes that are not in the root list

Potential function:

$$\Phi \coloneqq R + 2M$$

Example:

•
$$R = 7, M = 2 \rightarrow \Phi = 11$$

Actual Time of Operations

• Operations: initialize-heap, is-empty, insert, get-min, merge

```
actual time: O(1)
```

Normalize unit time such that

$$t_{init}$$
, $t_{is-empty}$, t_{insert} , $t_{get-min}$, $t_{merge} \le 1$

- Operation delete-min:
 - Actual time: O(length of H.rootlist + D(n))
 - Normalize unit time such that

$$t_{del-min} \leq D(n) + \text{length of } H.rootlist$$

- Operation descrease-key:
 - Actual time: O(length of path to next unmarked ancestor)
 - Normalize unit time such that

 $t_{decr-key} \leq \text{length of path to next unmarked ancestor}$

Amortized Time of Delete-Min

Assume that operation i is a *delete-min* operation:

Actual time: $t_i \leq D(n) + |H.rootlist|$ Potential function $\Phi = R + 2M$:

- R: changes from H.rootlist to at most D(n)
- M: (# of marked nodes that are not in the root list)
 - no new marks
 - if node v is moved away from root list, v. mark is set to false \rightarrow value of M does not increase!

$$\underbrace{\frac{M_{i} \leq M_{i-1}}{\Phi_{i} \leq \Phi_{i-1}} + D(n) - |H.rootlist|}_{P(n) = H.rootlist}$$

Amortized Time: $a_i = \overset{\circ}{t_i} + \Phi_i - \Phi_{i-1} \leq 2D(n)$

Amortized Time of Decrease-Key

Assume that operation i is a decrease-key operation at node u:

Actual time: $t_i \leq \text{length of path to next unmarked ancestor } v$

Potential function $\Phi = R + 2M$: $4 \le 1$

- Assume, node u and nodes u_1 , ..., $\overline{u_k}$ are moved to root list
 - $-u_1, ..., u_k$ are marked and moved to root list, v mark is set to true
- $\geq k$ marked nodes go to root list, ≤ 1 node gets newly marked
- $_{L}R$ grows by $\leq k+1$, M grows by 1 and is decreased by $\geq k$

$$R_i \le R_{i-1} + k + 1, \qquad M_i \le M_{i-1} + 1 - k$$

 $\Phi_i \le \Phi_{i-1} + (k+1) - 2(k-1) = \Phi_{i-1} + 3 - k$

Mortized time:

$$a_i = t_i + \Phi_i - \Phi_{i-1} \leq k+1+3-k = 4$$

Algorithm Theory, WS 2013/14

Fabian Kuhn

Complexities Fibonacci Heap

Is-Empty: O(1)

O(1)**Insert**:

Get-Min:

• Delete-Min:

Decrease-Key:

O(n+ nd.D(m)

amortized

- **Merge** (heaps of size m and $n, m \leq n$): O(1)
- How large can D(n) get?

Rank of Children

Lemma:

Consider a node v of rank k and let u_1, \dots, u_k be the children of v in the order in which they were linked to v. Then,

Proof:

$$rank(u_i) \geq i-2$$
.

Fibonacci Numbers:

$$F_0 = 0, F_1 = 1, \forall k \ge 2: F_k = F_{k-1} + F_{k-2}$$
Lemma: $0, 1, 1, 2, 5, 5, 8, 13, 21, \dots$

In a Fibonacci heap, the size of the sub-tree of a node v with

rank k is at least F_{k+2} .

• S_k : minimum size of the sub-tree of a node of rank k $S_0 = 1, S_1 = 2$

$$S_0 = 1,$$
 $S_1 = 2,$ $\forall k \ge 2: S_k \ge 2 + \sum_{i=0}^{k-2} S_i$

Claim about Fibonacci numbers:

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_{i}$$

$$S_0 = 1, S_1 = 2, \forall k \ge 2: S_k \ge 2 + \sum_{i=0}^{k-2} S_i, \qquad F_{k+2} = 1 + \sum_{i=0}^{k-2} S_i$$

$$F_{k+2} = 1 + \sum_{i=0}^{K} F_i$$

• Claim of lemma: $S_k \ge F_{k+2}$

step:
$$S_k \ge 2 + \sum_{i=0}^{\infty} S_i$$

$$= | + \sum_{j=0}^{k} \overline{T}_{j} = \overline{T}_{k+2}$$

Lemma:

In a Fibonacci heap, the size of the sub-tree of a <u>node</u> v with <u>rank</u> k is at least F_{k+2} .

Theorem:

The maximum rank of a node in a Fibonacci heap of size n is at most

$$D(n) = O(\log n).$$

Proof:

The Fibonacci numbers grow exponentially:

$$F_k = \frac{1}{\sqrt{5}} \cdot \left(\left(\frac{1 + \sqrt{5}}{2} \right)^k - \left(\frac{1 - \sqrt{5}}{2} \right)^k \right)$$

• For $D(n) \ge k$, we need $n \ge F_{k+2}$ nodes.

Summary: Binomial and Fibonacci Heaps

	Binomial Heap	Fibonacci Heap
initialize	O (1)	0 (1) ○(Ŋ)
insert	$O(\log n)$	0 (1) $\aleph(\psi)$
get-min	O (1)	0 (1) ○(u)
delete-min	$O(\log n)$	$O(\log n) *_{(u)}$
decrease-key	$O(\log n)$	0 (1) * O(m)
merge	$O(\log n)$	0 (1)
is-empty	0(1)	O(1) O(u)

(mloza)

Dijksta: O(m + nlogn)

amortized time

Minimum Spanning Trees

Prim Algorithm:

- 1. Start with any node v (v is the initial component)
- 2. In each step: Grow the current component by adding the minimum weight edge e connecting the current component with any other node

Kruskal Algorithm:

- 1. Start with an empty edge set
- 2. In each step:
 Add minimum weight edge *e* such that *e* does not close a cycle

Implementation of Prim Algorithm

Start at node s, very similar to Dijkstra's algorithm:

- 1. Initialize d(s) = 0 and $\underline{d(v)} = \infty$ for all $v \neq s$
- 2. All nodes * are unmarked
- 3. Get unmarked node u which minimizes $\underline{d(u)}$:

4. For all
$$e = \{u, v\} \in E$$
, $\underline{d(v)} = \min\{d(v), w(e)\}$

5. mark node u

6. Until all nodes are marked

Implementation of Prim Algorithm

Implementation with Fibonacci heap:

• Analysis identical to the analysis of Dijkstra's algorithm:

O(n) insert and delete-min operations

O(m) decrease-key operations

• Running time: $O(m + n \log n)$

Kruskal Algorithm

- 1. Start with an empty edge set
- 2. In each step:
 Add minimum
 weight edge e
 such that e does
 not close a cycle

Implementation of Kruskal Algorithm

1. Go through edges in order of increasing weights

Sort edges by weight O(mlogh)

2. For each edge *e*:

if e does not close a cycle then

need an efficient way to check whether e closes a cycle

add e to the current solution

update data struct.

Union-Find Data Structure

Also known as **Disjoint-Set Data Structure**...

Manages partition of a set of elements

set of disjoint sets

Operations:

• make_set(x): create a new set that only contains element x

• find(x): return the set containing x

• union(x, y): merge the two sets containing x and y

Implementation of Kruskal Algorithm

1. Initialization:

For each node v: make_set(v)

n singleton sets

- 2. Go through edges in order of increasing weights: Sort edges by edge weight
- 3. For each edge $e = \{u, v\}$:

if $\underbrace{\operatorname{find}(u) \neq \operatorname{find}(v)}_{\text{add } e \text{ to the current solution}}$

union(u, v)

Algorithm Theory, WS 2013/14

Fabian Kuhn

Managing Connected Components

 Union-find data structure can be used more generally to manage the connected components of a graph

... if edges are added incrementally

- make_set(v) for every node v
- find(v) returns component containing v
- union(u, v) merges the components of u and v (when an edge is added between the components)
- Can also be used to manage biconnected components

Basic Implementation Properties

Representation of sets:

• Every set S of the partition is identified with a representative, by one of its members $x \in S$

Operations:

- $make_set(x)$: x is the representative of the new set $\{x\}$
- find(x): return representative of set S_x containing x
- union(x, y): unites the sets S_x and S_y containing x and y and returns the new representative of $S_x \cup S_y$

Observations

Throughout the discussion of union-find:

- n: total number of make_set operations
- m: total number of operations (make_set, find, and union)

Clearly:

- $m \ge n$
- There are at most n-1 union operations

Remark:

- We assume that the \underline{n} make_set operations are the first n operations
 - Does not really matter...

Linked List Implementation

Each set is implemented as a linked list:

representative: first list element (all nodes point to first elem.)
 in addition: pointer to first and last element

• sets: {1,5,8,12,43}, {7,9,15}; representatives: 5, 9

Linked List Implementation

$make_set(x)$:

Create list with one element:

time: O(1)

find(x):

Return first list element:

time: O(1)

Linked List Implementation

union(x, y):

• Append list of *y* to list of *x*:

Time: O(length of list of y)

Cost of Union (Linked List Implementation)

Total cost for n-1 union operations can be $\Theta(n^2)$:

• make_set(x_1), make_set(x_2), ..., make_set(x_n), union(x_{n-1}, x_n), union(x_{n-2}, x_{n-1}), ..., union(x_1, x_2)

Helirect
$$|1+2+...+u-1| = \Theta(u^2)$$

Weighted-Union Heuristic

- In a bad execution, average cost per union can be $\Theta(n)$
- Problem: The longer list is always appended to the shorter one

Idea:

In each union operation, append shorter list to longer one!

Cost for union of sets
$$S_x$$
 and S_y : $O(\min\{|S_x|, |S_y|\})$

Theorem: The overall cost of \underline{m} operations of which at most n are make_set operations is $O(m + n \log n)$.

Weighted-Union Heuristic

Theorem: The overall cost of m operations of which at most nare make_set operations is $O(m + n \log n)$.

Proof:

make-sel, find! O(1)

total union cost = O(total # of pointer redirections)

O(n. # redir. per element)

after k redir. of x's pointer set of x has $\geq 2^k$ relements

Disjoint-Set Forests

- Represent each set by a tree
- Representative of a set is the root of the tree

Disjoint-Set Forests

make_set(x): create new one-node tree

find(x): follow parent point to root
 (parent pointer to itself)

union(x, y): attach tree of x to tree of y

Bad Sequence

Bad sequence leads to tree(s) of depth $\Theta(n)$

• make_set(x_1), make_set(x_2), ..., make_set(x_n), union(x_1, x_2), union(x_1, x_3), ..., union(x_1, x_n)

Union-By-Size Heuristic

Union of sets S_1 and S_2 :

- Root of trees representing S_1 and S_2 : r_1 and r_2
- W.I.o.g., assume that $|S_1| \ge |S_2|$
- Root of $S_1 \cup S_2$: r_1 (r_2 is attached to r_1 as a new child)

Theorem: If the union-by-size heuristic is used, the worst-case cost of a find-operation is $O(\log n)$

Proof:

free with & elements has depth = Orlog's)

Similar Strategy: union-by-rank

rank: essentially the depth of a tree

Union-Find Algorithms

Recall: m operations, n of the operations are make_set-operations

Linked List with Weighted Union Heuristic:

• make_set: worst-case cost O(1)

• find : worst-case cost O(1)

• union : amortized worst-case cost $O(\log n)$

Disjoint-Set Forest with Union-By-Size Heuristic:

make_set: worst-case cost <u>0</u>(1)

• find : worst-case cost $O(\log n)$

• union : worst-case cost $O(\log n)$

Can we make this faster?

Path Compression During Find Operation

find(a):

- 1. if $a \neq a$. parent then
- 2. a.parent = find(a.parent)
- 3. **return** *a.parent*

Complexity With Path Compression

When using only path compression (without union-by-rank):

 \underline{m} : total number of operations

- *f* of which are find-operations
- n of which are make_set-operations
 - \rightarrow at most n-1 are union-operations

Total cost:
$$O(m + f \cdot \lceil \log_{2+f/n} n \rceil) = O(m + f \cdot \log_{2+m/n} n)$$

Union-By-Size and Path Compression

Theorem:

Using the combined union-by-rank and path compression heuristic, the running time of m disjoint-set (union-find) operations on n elements (at most n make_set-operations) is

$$\Theta(m \cdot \alpha(m,n)),$$

Where $\alpha(m, n)$ is the inverse of the Ackermann function.

Ackermann Function and its Inverse

Ackermann Function:

$$\text{For } k, \ell \geq 1, \\ A(k,\ell) \coloneqq \begin{cases} 2^{\ell}, & \text{if } k = 1, \ell \geq 1 \\ A(k-1,2), & \text{if } k > 1, \ell = 1 \\ A(k-1,A(k,\ell-1)), & \text{if } k > 1, \ell > 1 \end{cases}$$

Inverse of Ackermann Function:

$$\alpha(m,n) := \min\{k \geq 1 \mid A(k,\lfloor m/n \rfloor) > \log_2 n\}$$

Inverse of Ackermann Function

- $\alpha(m,n) := \min\{k \ge 1 \mid A(k,\lfloor^m/n\rfloor) > \log_2 n\}$ $m \ge n \Rightarrow A(k,\lfloor^m/n\rfloor) \ge A(k,1) \Rightarrow \alpha(m,n) \le \min\{k \ge 1 \mid A(k,1) > \log n\}$
- $A(1,\ell) = 2^{\ell}$, A(k,1) = A(k-1,2), $A(k,\ell) = A(k-1,A(k,\ell-1))$