)

UNI
FREIBURG

Chapter 6
Randomization

C‘ovx'l'w\kb'\/\ (R

Algorithm Theory ¢r--# i/
WS 2013/14

Fabian Kuhn

UNI

Randomized Quicksort

FREIBURG

Quicksort: b
-
S K v
¢

Sp<v % S, >v

function Quick (S: sequence): sequence; WMU\:“) J‘;w& ¢aun

{returns the sorted sequence S} ﬁwimtbﬁ

begin

if #5 < 1 then return S w
else {@sre pivot element 1@ clooge

partition S into S, with elements < v,

,J rau.o(ouw

and S, with elements > v
return | Quick(S,) |v |Quick(S;)

end;

Algorithm Theory, WS 2013/14 Fabian Kuhn 2

UNI

Randomized Quicksort Analysis

FREIBURG

Randomized Quicksort: pick uniform random element as pivot

Running Time of sorting n elements:

* Let’s just count the number of comparisons

* |n the partitioning step, all n — 1 non-pivot elements have to be
compared to the pivot

* Number of comparisons: (Sq. «2 o W)
\& Ymkl-‘“\

n—1 + #comgarisons in recursive calls

* If rank of pivot is r: el
recursive calls with 7 — 1 and n — r elements
- n- ¢
\fem———W)

\z2 - - - T

Algorithm Theory, WS 2013/14 Fabian Kuhn 3

Randomized Quicksort Analysis

UNI

FREIBURG

Random variables: C=nn* G« Co E[C-]
e (:total number of comparisons (for a given array of length 2)
e R:rank of first pivot |) S, TF(%Q = T,‘;

* (Cp, C: number of comparisons for the 2 recursive calls

FCF Bl E[C] =n — 1+ E[C,] + E[C,] Flevi=t
Law of Total Expectation:

E[C] = z P(R =) - E[C|R = 1]
r=1

P(R=r)-(n—1+E[C,|R=7]+E[C.|R =T7])

r=1

Algorithm Theory, WS 2013/14 Fabian Kuhn

UNI

Randomized Quicksort Analysis

FREIBURG

We have seen that:

S

Tw = T(r-D TCu-m)
Define: :

E@=2P(R=r)-(n—1+@rm=r]+IE[c,,|R=r])

e T(n): expected number of comparisons when sorting n elements

E[C] =T(n)
E[C/\R=7]=T(r —1)
E[C/IR=r]=Tn—r)

Recursio/n;
T(n) =Z%-(n—1+T(r—1)+T(n—r))

r=1
_T0) =T =0

Algorithm Theory, WS 2013/14 Fabian Kuhn 5

Randomized Quicksort Analysis

UNI
FREIBURG

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn. (<20

Proof: TN 2.1 N =0O
n
T(n)=z— (n—-14+4Tr-1)+Tn-r)), TO)=0
r=1 regd. i‘-“’a:

(\(.\\-\—T(V‘ (- D?

=h—~| + W <
2 'S TR
= W-l & =
NS T (LT
w- w
< W=+ %‘\Z‘ Ln) € et 4 g‘xf?u(x)o(x

Algorithm Theory, WS 2013/14 Fabian Kuhn 6

Randomized Quicksort Analysis

UNI
FREIBURG

Theorem: The expected number of comparisons when sorting n

elements using randomized quicksortis T(n) < 2nlnn.
—_— —_——

Proof:

4 n
T(n)Sn—1+—-jxlnxdx
= n 1

“‘ZQ“(“ 2 | \
J — _lenx x?
xInx dx = — i

 ——

1
w aloo ?095,[,((1 & slow ot

= Lley v 3o & Lk T = Ol &g)
-

c
Algorithm Theory, WS 2013/14 Fabian Kuhn i\ 7

= W1 L ZM.QuM -n+

IBURG

Alternative Analysis

Arraytosort:[7,3,1,10,14,8,12@,4,6,5,15,2,13,11]

Viewing quicksort run as a tree:

Algorithm Theory, WS 2013/14 Fabian Kuhn 8

Comparisons

UNI
FREIBURG

e Comparisons are only between pivot and non-pivot elements

 Every element can only be the pivot once:
— every 2 elements can only be compared once!

e W.l.0.g., assume that the elements to sort are 1,2, ..., n

 Elementsi andj are compared if and only if eitheri orjis a
pivot before any element h:i < h < j is chosen as pivot
— i.e., iff i is an ancestor of j or j is an ancestor of i

C P
{ === e

3- (1 Q(Qu«mfs

P(comparison betw.i and j) = ——
T——] — 1 + 1
Algorithm Theory, WS 2013/14 Fabian Kuhn —_— 9

Counting Comparisons

UNI
I

FREIBURG

Random variable for every pair of elements (i, j):

—

Xij —

—_—

{1, if there is a comparison between i and j
0, otherwise

2.
T(ng‘: D - Rl

{IED(‘) '—3 ST

a

Number of comparisons: X

e Whatis E[X]?

Algorithm Theory, WS 2013/14

X = ZXU

l<]

Fabian Kuhn

10

Randomized Quicksort Analysis

UNI

FREIBURG

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.

Proof:

 Linearity of expectation:) o

For all random variables X4, ..., X,; and all a4, ..., a,, € R,

IElzn:alXi =) aq;E[X;].
X=2X E(=Flzx) = 2]
2)-,.},

‘“22 3=l

l-—-—- l)- ('H
Algorithm Theory, WS 2013/14 Fabian Kuhn

11

Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.

Proof: =
n-1n-i+1
E[X] = _
X1= 222]—l+1 222]{
1= 1||__ i+1
= - -\- -—
‘&mw?cu‘%:\\e& - ;(Sg i -\
H(m i g : < ZZ (He -1)
(=1
Hoyg 14 e = 2 (ud) (e 1)
- e -
Z L

D

Algorithm Theory, WS 2013/14 Fabian Kuhn 12

UNI
I

FREIBURG

UNI

Types of Randomized Algorithms

FREIBURG

Las Vegas Algorithm:

e always a correct solution

 running time is a random variable

 Example: randomized quicksort, contention resolution

——

e

Monte Carlo Algorithm:

e probabilistic correctness guarantee (mostly correct)
e ————

« fixed (deterministic) running time

 Example: primality test

—

Algorithm Theory, WS 2013/14 Fabian Kuhn 13

UNI

Minimum Cut

FREIBURG

Reminder: Given a graph ¢ = (V, E), a cut is a partition (4, B)
of VsuchthatV =AUB,ANB=0,A,B+0

Size of the cut (4, B): # of edges crossing the cut

 For weighted graphs, total edge weight crossing the cut
/erg Cauucl?v-f/b\
Goal: Find a cut of minimal size (i.e., of size 1(G))

Maximum-flow based algorithm: <
 Fix s, compute min s-t-cut for all t #

———
e

. O(m : /1(6)) = 0(mn) per s-t cut
e Gives an O(mn/l(G)) = 0(mn?)-algorithm O(qu

3
Best-known deterministic algorithm: O (mn + n*logn) = w >

Algorithm Theory, WS 2013/14 Fabian Kuhn 14

UNI

Fdge Contractions &~

FREIBURG

* In the following, we consider multi-graphs that can have
multiple edges (but no self-loops)

ok not ok

Contracting edge {u, v}: I:@/“;D@/O
e Replace nodes u, v by new node w v

* For all edges {u, x} and {v, x}, add an edge {w, x}
e Remove self-loops created at node w

@——p—b
" contract {u, v}

Algorithm Theory, WS 2013/14 Fabian Kuhn

UNI
I

FREIBURG

Properties of Edge Contractions

Nodes:
e After contracting {u, v}, the new node represents u and v

e After a series of contractions, each node represents a subset of
original nodes

(1,2) (1,2)
5.6} ;H | 3.@56)
— —
= (3,4,5,6)
(4,5, 6)
Cuts:
e Assume in the contracted graph, w represents nodesi\é, cV

e The edges of a node w in a contracted graph are in a one-to-one
correspondence with the edges crossing the cut (S,,,V \ S,,)

=

Algorithm Theory, WS 2013/14 Fabian Kuhn 16

UNI

Randomized Contraction Algorithm

FREIBURG

Algorithm:

while there are > 2 nodes do
contract a uniformly random edge

return cut induced by the last two remaining nodes

(cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum
cut with probability at least 1/0 (n?).

e We will show this next.

Theorem: The random contraction algorithm can be implemented
in time 0(n?).

—
e There are n — 2 contractions, each can be done in time 0(n).

* You will show this in the exercises.
Algorithm Theory, WS 2013/14 Fabian Kuhn 17

