)

Chapter 8
Online Algorithms

Algorithm Theory
WS 2014/15

Fabian Kuhn

UNI

FREIBURG

Paging Algorithm

UNI
FREIBURG

Assume a simple memory hierarchy:

fast memory of size k

TN

"
C coe slow memory

(

\—/

If a memory page has to be accessed:

Page in fast memory (hit): take page from there
Page not fast memory (miss): leads to a page fault

Page fault: the page is loaded into the fast memory and some
page has to be evicted from the fast memory

Paging algorithm: decides which page to evict

Classical online problem: we don’t know the future accesses

Algorithm Theory, WS 2013/14 Fabian Kuhn 4

UNI

Paging Strategies

FREIBURG

Least Recently Used (LRU):
* Replace the page that hasn’t been used for the longest time

First In First Out (FIFO):
* Replace the page that has been in the fast memory longest

Last In First Out (LIFO):
* Replace the page most recently moved to fast memory

Least Frequently Used (LFU):
* Replace the page that has been used the least

[\ Longest Forward Distance (LFD):
e Replace the page whose next request is latest (in the future)

 LFD is not an online strategy!
/

Algorithm Theory, WS 2013/14 Fabian Kuhn 5

LFD is Optimal

UNI

FREIBURG

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:
* For contradiction, assume that LFD is not optimal

 Then there exists a finite input sequence o on which LFD is not
optimal (assume that the length of g is |o| = n)

* Let OPT be an optimal solution for o such that
— OPT processes requests 1, ..., i in exactly the same way as LFD
— OPT processes request i + 1 differently than LFD

— Any other optimal strategy processes one of the first i + 1 requests
differently than LDF

* Hence, OPT is the optimal solution that behaves in the same way
as LFD for as long as possible 2 we have i <n

e Goal: Construct OPT' that is identical with LFD forreq. 1, ...,i + 1

e — -_—

Algorithm Theory, WS 2013/14 Fabian Kuhn 6

LFD is Optimal

UNI
FREIBURG

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:

Case 1: Request i + 1 does not lead to a page fault
—— D— SR

* LFD does not change the content of the fast memory

* OPT behaves differently than LFD
- OPT replaces some page in the fast memory

— As up to request i #=F, both algorithms behave in the same way, they also
have the same fast memory content

— OPT therefore does not require the new page for request i + 1

— Hence, OPT can also load that page later (without extra cost) 2 OPT’

Algorithm Theory, WS 2013/14 Fabian Kuhn 7

LFD is Optimal

UNI
I

FREIBURG

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:
Case 2: Request i + 1 does lead to a page fault

 LFD and OPT move the same page into the fast memory, but they
evict different pages

— |If OPT loads more than one page, all pages that are not required for
request i + 1 can also be loaded later

\

* Say, LFD evicts page p and OPT evicts pag€ p

!/
aam

* By the definition of LED, p’ is required again before page p

Algorithm Theory, WS 2013/14 Fabian Kuhn 8

LFD is Optimal

UNI

FREIBURG

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof: c

?
Case 2: Request i + 1 does lead to a page fault 7
2

2

F” f
i+1 " < £:0PTevictsp j':nextreq.forp’ j:nextreq.forp

=

3 | | . | >
-LFD evicts p < j': OPT loads p’ (for first time after i + 1)
—OPT evicts p’

a) OPT keeps p in fast memory until request £

— Evict p atrequesti + 1, keep p’ instead and load p (instead of p’) back
into the fast memory at request £

b) OPT evicts p at request £’ < ¥
— Evictp atrequesti + 1 and p’ at request £’ (switch evictions of p and p’)

Algorithm Theory, WS 2013/14 Fabian Kuhn 9

UNI

Phase Partition

FREIBURG

We partition a given request sequence g into phases as follows:
* Phase 0: empty sequence

* Phase i : maximal sequence that immediately follows phase
[— 1 and contains at most k distinct page requests

Example sequence (k = 4):

251254@’10%4836,’2)266832619)106310)2135

(aare hae s

age |
{ _)(.—'-‘—'/;7 &

t%g [Tndeval

Phase i Interval: interval starting with the second request of phase i
and ending with the first request of phase i + 1
* If the last phase is phase p, phase-interval i is defined fori =1, ...,p — 1

Algorithm Theory, WS 2013/14 Fabian Kuhn 10

Optimal Algorithm

UNI
I

FREIBURG

Lemma: Algorithm LFD has at least one page fault in each phase
[interval (fori =1, ...,p — 1, where p is the number of phases).

Proof: phase i interval
l A
N
requests: | oo q’ oo
phase i phasei + 1

* q isin fast memory after first request of phase i
 Number of distinct requests in phase i: k

* By maximality of phase i: g’ does not occur in phase i
* Number of distinct requests # g in phase interval i: k

—> at least one page fault

Algorithm Theory, WS 2013/14 Fabian Kuhn 11

l, fhoe> ALG = ?-‘4

LRU and FIFQ Algorithms OFT 2 p-|

UNI
FREIBURG

Lemma: Algorithm LFD has at least one page fault in each phase
interval i (fori =1, ...,p — 1, where p is the number of phases).

Corollary: The number of page faults of an optimal offline
algorithm is at least p — 1, where p is the number of phases

Theorem: The LRU and the FIFO algorithms both have a
competitive ratio of at most k. N e {

) &
Proof: — e

I (
* In phase i only pages from phases before phase i are evicted
from the fast memory =2 < k page faults per phase

— As long as not all k pages from phase i have been requested, the least
recently used and the first inserted are from phases before i

— When all k pages have been requested, the k pages of phase i are in fast
memory and there are no more page faults in phase i

Algorithm Theory, WS 2013/14 Fabian Kuhn 12

L _,_‘_‘_ﬁ_)}

Lower Bound T LJ:‘E__’-_,.

—)

UNI
FREIBURG

v

Theorem: Even if the slow memory contains only k + 1 pages,
any deterministic algorithm has competitive ratio at least k.

Proof:
* Consider some given deterministic algorithm ALG

* Because ALG is deterministic, the content of the fast memory
after the first i requests is determined by the first i requests.

* Construct a request seqatfjence inductively as follows:
— Assume some initial}@/ memory content

— The (i + 1)St request is for the page which is not in fast memory after
the first i requests (throughout we only use k + 1 different pages)

 There is a page fault for every request
* OPT has a page fault at most every k requests

— There is always a page that is not required for the next k — 1 requests

Algorithm Theory, WS 2013/14 Fabian Kuhn 13

UNI

Randomized Algorithms

* We have seen that deterministic paging algorithms cannot be
better than k-competitive

* Does it help to use randomization?

Competitive Ratio: A randomized online algorithm has
competitive ratio ¢ = 1 if for all inputs I,

E[ALG(D)] < ¢ - OPT(I) + a.

 Ifa <0, we say that ALG is strictly c-competitive.

Algorithm Theory, WS 2013/14 Fabian Kuhn 14

FREIBURG

Adversaries

UNI
FREIBURG

* Forrandomized algorithm, we need to distinguish between
different kinds of adversaries (providing the input)

l Oblivious Adversary:

* Has to determine the complete input sequence before the
algorithm starts

— The adversary cannot adapt to random decisions of the algorithm

] Adaptive Adversary:

* The adversary knows how the algorithm reacted to earlier inputs

(: online adaptive: adversary has no access to the randomness
used to react to the current input

[- offline adaptive: adversary knows the random bits used by the
algorithm to serve the current input

Algorithm Theory, WS 2013/14 Fabian Kuhn 15

Lower Bound

UNI
FREIBURG

The adversaries can be ordered according to their strength

{ /
oblivious < online adaptive < offline adaptive
[————————————— ——————

* An algorithm that works with an adaptive adversary also
works with an oblivious one

 Alower bound that holds against an oblivious adversary also
holds for the other 2

Theorem: No randomized paging algorithm can be better than
k-competitive against an online (or offline) adaptive adversary.

Proof: The same proof as for deterministic algorithms works.

* Are there better algorithms with an oblivious adversary?

Algorithm Theory, WS 2013/14 Fabian Kuhn 16

UNI

Randomized Algorithms

FREIBURG

* We have seen that deterministic paging algorithms cannot be
better than k-competitive

* Does it help to use randomization?

Competitive Ratio: A randomized online algorithm has
competitive ratio ¢ = 1 if for all inputs I,

E[ALG(D)] < ¢ - OPT(I)

 Ifa <0, we say that ALG is strictly c-competitive.

Algorithm Theory, WS 2013/14 Fabian Kuhn 2

Adversaries

UNI
FREIBURG

* Forrandomized algorithm, we need to distinguish between
different kinds of adversaries (providing the input)

Oblivious Adversary:

* Has to determine the complete input sequence before the
algorithm starts

____ — The adversary cannot adapt to random decisions of the algorithm

Gda ptive Adversary:

* The adversary knows how the algorithm reacted to earlier inputs

* online adaptive: adversary has no access to the randomness
B used to react to the current input

» offline adaptive: adversary knows the random bits used by the
algorithm to serve the current input

Algorithm Theory, WS 2013/14 Fabian Kuhn 3

Lower Bound

UNI
FREIBURG

The adversaries can be ordered according to their strength

oblivious < online adaptive < offline adaptive
e

* An algorithm that works with an adaptive adversary also
works with an oblivious one

 Alower bound that holds against an oblivious adversary also
holds for the other 2

Theorem: No randomized paging algorithm can be better than
k-competitive against an online (or offline) adaptive adversary.

Proof: The same proof as for deterministic algorithms works.

* Are there better algorithms with an oblivious adversary?

Algorithm Theory, WS 2013/14 Fabian Kuhn 4

UNI

The Randomized Marking Algorithm

FREIBURG

J
e Every entry in fast memory has a marked flag Ttz 2 L

g A —

Initially, all entries are unmarked.

* |f a pagein fast memory is accessed, it gets marked
* When a page fault occurs:

— If all k pages in fast memory are marked,
all marked bits are set to 0 <

— The page to be evicted is chosen uniformly at random
among the unmarked pages

— The marked bit of the new page in fast memory is set to 1

Algorithm Theory, WS 2013/14 Fabian Kuhn 5

Y‘««us — OPTzp~!
Example f — :

UNI
FREIBURG

Input Sequence (k=6): l
1 b oL |
\2, 533,68,2,95,7,1,2,5,2,3,7,4,8,1,2,7,5,3,6,9,6,10,4,1,2
- ~" ~ ;/‘ — ~" —- ~
phase 1 phase 2 phase 3 phase 4
/
Fast Memory: 4

1006 | 1 9 4 | 2

Observations:

* At the end of a phase, the fast memory entries are exactly the k
pages of that phase

* At the beginning of a phase, all entries get unmarked
* #ipage faults depends on #new pages in a phase

Algorithm Theory, WS 2013/14 Fabian Kuhn 6

UNI

Page Faults per Phase ETH{);T’]

FREIBURG

Consider a fixed phase i:

* Assume that of the k pages of phase i, m; are new and k —m;
are old (i.e., they already appear in phase i — 1)

* All m; new pages lead to page faults (when they are requested
for the first time)

 When requested for the first time, an old page leads to a page

—

fault, if the page was evicted in one of the previous page faults

* We need to count the number of page faults for old pages

Wy \)agq lM{JS 6@{ e w fajgg‘.

Algorithm Theory, WS 2013/14 Fabian Kuhn 7

Page Faults per Phase & F 1 |

WD

UNI
I

FREIBURG

7 L 43

Phase i, Lth old page that is requested (for the first time):

There is a page fault if the page has been evicted
There have been at most m; + j — 1 distinct requests before
The old places of the j — 1 first old pages are occupied

The other < m; pages are at uniformly random places among the
remaining k — (j — 1) places (oblivious adv.)

Probability that the old place of thejth old page is taken:

< = I
k=0 -1)

T

Algorithm Theory, WS 2013/14 Fabian Kuhn 8

T = L ooy oo
Page Faults per Phase Ty =1 4 gy
A‘b Q pq/!ﬁq/

UNI
FREIBURG

Moo=

Phasei > 1, jth old page that is requested (for the first time):
* Probability that there is a page fault: 1, = 2 ;-

=% 7(?— 5 E)=500angpd)
—_——

Number of page faults for old pages in phase i: F;

k—m; /—\@Fﬂ

—> IE[F | = z P(]th old page incurs page fault)

'J>k_ml k
T L k- (1’ -1 Lt
]=1 {=m;+1

= | _——
Algorithm Theory, WS 2013/14 Fabian Kuhn

UNI

Competitive Ratio

FREIBURG

Theorem: Against an oblivious adversary, the randomized marking
algorithm has a competitive ratio of at most 2H (k) < 21In(k) + 2.

Proof:
* Assume that there are p phases

* Hpage faults of rand. marking algorithm in phase i: F; + m;

* We have seen that
—=E[F;] <m; - (H(k) —1) <m,;-In(k)

* Let F be the total numbejof page faults of the algorithm:

p p
EIF] <) (E[R1+m) <H®) -) m
=1 =1

T T l
old r}ﬂs hiw rﬁ}}A

Algorithm Theory, WS 2013/14 Fabian Kuhn 10

Competitive Ratio

UNI
FREIBURG

Theorem: Against an oblivious adversary, the randomized marking
algorithm has a competitive ratio of at most 2H (k) < 2In(k) + 2.

Proof: /

Let F;" be the number of page faults in phase i in an opt. exec.

Phase 1: mq pages have to be repIaceJL% Ff > my

A'L ¢ |

el

Phasei > 1: L

— — k —

W, Ww

— Number of distinct page requests in phases i —1landi: k +m;

— Therefore, F;_{ + F; = m;

Total number of page requests F*:

2™
) p 1 S N— 1 p
A Y RN [0S Yy By o
i=1 f }2\2('\-" i=1
- Tt + TR 3 T -

Algorithm Theory, WS 2013/14 Fabian Kuhn

11

Competitive Ratio

UNI
I

FREIBURG

Theorem: Against an oblivious adversary, the randomized marking
algorithm has a competitive ratio of at most 2H (k) < 2In(k) + 2.

Proof: E(F) < 24w - F°
g‘ﬁ‘
* Randomized marking algorithm: comp. rdio

p
BIF) < HO) -) m
=1

e Optimal algorithm:

e

Il
[N

1
F ZE m;

l

[Remark: It can be shown that no randomized algorithm has a

competitive ratio better than H (k) (against an obl. adversary)
—

Algorithm Theory, WS 2013/14 Fabian Kuhn 12

UNI

Self-Adjusting Lists

FREIBURG

Linked lists are often inefficient

— Cost of accessing an item at position i is linear in i

* But, linked lists are extremely simple

— And therefore nevertheless interesting
 Can we at least improve the behavior of linked lists?

* |In practical applications, not all items are accessed equally often
and not equally distributed over time

— The same items might be used several times over a short period of time

* Idea: rearrange list after accesses to optimize the structure for
future accesses

* Problem: We don’t know the future accesses

— The list rearrangement problems is an online problem!

-7

Algorithm Theory, WS 2012/13 Fabian Kuhn 2

Model

UNI
I

FREIBURG

* Only find operations (i.e., access some item)

— Let’signore insert and delete operations

— Results can be generalized to cover insertions and deletions

Cost Model:
* Accessing item at position i costs i

 The only operation allowed for rearranging the list is swapping
two adjacent list items

e Swapping any two adjacent items costs 1

Algorithm Theory, WS 2012/13 Fabian Kuhn 3

UNI
I

FREIBURG

Rearranging The List

Frequency Count (FC):
* For each item keep a count of how many times it was accessed
* Keep items in non-increasing order of these counts

e After accessing an item, increase its count and move it forward
past items with smaller count

—
Move-To-Front (MTF):
 Whenever an item is accessed, move it all the way to the front

| ee——

Transpose (TR):
e After accessing an item, swap it with its predecessor

Algorithm Theory, WS 2012/13 Fabian Kuhn 4

Cost

UNI
I

FREIBURG

T —

Cost when accessing item at positio@
* Frequency Count (FC): between i and 2i — 1
* Move-To-Front (MTF): 2i — 1
— ==
 Transpose (TR):i + 1

Random Accesses:

* |f each item x has an access probability p,, and the items are
accessed independently at random using these probabilities, FC
and TR are asymptotically optimal

Real access patterns are not random, TR usually behaves badly and
the much simpler MTF often beats FC

Algorithm Theory, WS 2012/13 Fabian Kuhn 5

Move-To-Front

UNI

 We will see that MTF is competitive

* To analyze MTF we need competitive analysis and amortized

analysis

™ The MTF
Operation k: VAR YRS
* Assume, the operation accesses item x at position i

* (cj: Actual cost of the MTF algorithm
@ e
L

Cr =-_2l— 1

—

. <ak> amortized cost of the MTF algorithm |
. ctual cost of an optimal offline strategy chk s A&- %C}t

— Let’s call the optimal offline strate —

Algorithm Theory, WS 2012/13 Fabian Kuhn 6

FREIBURG

