
Albert-Ludwigs-Universität, Inst. für Informatik
Prof. Dr. Fabian Kuhn
H. Ghodselahi, O. Saukh October 21, 2015

Algorithm Theory, Winter Term 2015/16

Problem Set 1

hand in (hard copy or electronically) by 10:15, Thursday October 29, 2015,
tutorial session will be on November 2, 2015

Exercise 1: Complexity (2+2 points)

Characterize the relationship between f(n) and g(n) in the following two examples by using the O,
Θ, or Ω notation. Hence, state if f(n) = Θ(g(n)) and otherwise if f(n) = O(g(n)) or f(n) = Ω(g(n)).
Explain your answers (formally)!

a) f (n) = nε (for any positive constant ε < 1
2) g (n) = log n

b) f (n) = log n! g (n) = n log n

Exercise 2: Recurrence Relations (2+2 points)

a) Guess the solution of the following recurrence relation by repeated substitution.

T (n) ≤ 2 · T (
n

2
) + c · n log2 n, T (1) ≤ c

where c > 0 is a constant.

b) Use induction to show that your guess is correct.

Exercise 3: Maximum Sum Subsequence (4 points)

Given an integer array A = {x0, x1, . . . , xn−1} where xi ∈ Z for all i ∈ {0, 1, . . . , n− 1} (note that the
values xi can be negative).

Devise an efficient divide-and-conquer algorithm to find a contiguous subsequence of elements in A
with maximum possible sum. That is, you need to find indices 0 ≤ i1 ≤ i2 ≤ n− 1 such that the sum∑i2

i=i1
xi is maximized. Write down the recurrence relation which describes the running time of your

algorithm and use the Master theorem to derive the running time of your algorithm.

Hint: There is a divide-and-conquer solution which runs in time O(n), an O(n log n) solution gives
partial points. In order to find an O(n) algorithm, it might help to first design an O(n log n) algorithm.

1


