
Albert-Ludwigs-Universität, Inst. für Informatik
Prof. Dr. Fabian Kuhn
M. Ahmadi, A. R. Molla, O. Saukh February 4, 2016

Algorithm Theory, Winter Term 2015/16

Problem Set 14

hand in (hard copy or electronically) by 10:15, Thursday February 11, 2016,

Note: The points of this problem set are not required to be admitted to the exam. However, any
points you achieve for this problem set count as bonus points towards getting 50% of the achievable
points of all other problem sets.

Exercise 1: All-prefix-sums on Multi-dimensional Matrices (6 points)

In this exercise, we consider a generalization of the the all-prefix-sums problem discussed in the lecture.
We study the following all-prefix-sums problem defined on a d-dimensional array.
We are given a n × n × · · · × n array A with entries ai1,i2,...,id (for ij ∈ {1, . . . , n}). The goal is to
calculate the all-prefix-sums array S with entries si1,i2,...,id which are defined as follows

si1,i2,...,id :=

i1∑
j1=1

i2∑
j2=1

· · ·
id∑

jd=1

aj1,j2,...,jd

Note that for d = 1, the problem is the usual all-prefix-sums problem from the lecture.

(a) (3 points) To warm up, we first consider the case d = 2. Give an efficient algorithm to solve the
2-dimensional all-prefix-sums problem. What are the work T1 and span T∞ of your solution.

Hint: The problem can be solved by performing 2n standard all-prefix-sums computations.

(b) (2 points) Generalize the above algorithm to d ≥ 2 dimensions. What are work T1 and span T∞
of the resulting parallel algorithm?

(c) (1 points) What is the minimum number of processors needed such that asymptotically, the
maximum possible speed-up can be achieved?

Exercise 2: Merging Two Sorted Arrays (6 points)

You are given two sorted arrays A = [a1, . . . , an] and B = [b1, . . . , bn], each of size n. The goal is to
merge them into one sorted array C = [c1, . . . , c2n] of length 2n.

(a) (1.5 points) We first consider the following subproblem. Given an index i ∈ {1, . . . , n}, we want
to find the final position j ∈ {1, . . . , 2n} of the value ai in the array C. Give a fast sequential
algorithm to compute j. What is the (sequential) running time of your algorithm?

(b) (1.5 points) Use the above algorithm to construct a parallel merging algorithm. The work T1 of
your algorithm should be at most O(n log n) and the span T∞ should be (asymptotically) as small
as possible. What is the span T∞ of your algorithm?

(c) (3 points) We now want to solve the merging problem in constant time (in parallel). Show that
by using O(n) processes, the subproblem considered in (a) can be solved in O(1) time. Use this
to get a constant-time parallel algorithm to merge the two sorted arrays. How many processors
do you need to achieve a constant-time algorithm?

1


