
Chapter 3

Dynamic Programming

Algorithm Theory
WS 2015/16

Fabian Kuhn

Algorithm Theory, WS 2015/16 Fabian Kuhn 2

Weighted Interval Scheduling

• Given: Set of intervals, e.g.
[0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]

• Each interval has a weight 𝒘

• Goal: Non-overlapping set of intervals of largest possible weight
– Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping

• Example: Intervals are room requests of different importance

0 1 2 3 4 5 7 6 8 9 10 11 12 13 14

[0,10], 1

[1,3], 1

[1,4], 10

[3,5], 2

[4,7], 5

[5,8], 1

[11,14], 5

[5,12], 25

[8,10], 1 [12,14], 1

[7,9], 4 [9,12], 8

Algorithm Theory, WS 2015/16 Fabian Kuhn 3

Greedy Algorithms

Choose available request with earliest finishing time:

• Algorithm is not optimal any more
– It can even be arbitrarily bad…

• No greedy algorithm known that works

0 1 2 3 4 5 7 6 8 9 10 11 12 13 14

[0,10], 1

[1,3], 1

[1,4], 10

[3,5], 2

[4,7], 5

[5,8], 1

[11,14], 5

[5,12], 25

[8,10], 1 [12,14], 1

[7,9], 4 [9,12], 2

Algorithm Theory, WS 2015/16 Fabian Kuhn 4

Solving Weighted Interval Scheduling

• Interval 𝑖: start time 𝑠(𝑖), finishing time: 𝑓(𝑖), weight: 𝑤(𝑖)

• Assume intervals 1,… , 𝑛 are sorted by increasing 𝑓(𝑖)
– 0 < 𝑓 1 ≤ 𝑓 2 ≤ ⋯ ≤ 𝑓(𝑛), for convenience: 𝑓 0 = 0

• Simple observation:
Opt. solution contains interval 𝑛 or it doesn’t contain interval 𝑛

Algorithm Theory, WS 2015/16 Fabian Kuhn 5

Solving Weighted Interval Scheduling

• Interval 𝑖: start time 𝑠(𝑖), finishing time: 𝑓(𝑖), weight: 𝑤(𝑖)

• Assume intervals 1,… , 𝑛 are sorted by increasing 𝑓(𝑖)
– 0 < 𝑓 1 ≤ 𝑓 2 ≤ ⋯ ≤ 𝑓(𝑛), for convenience: 𝑓 0 = 0

• Simple observation:
Opt. solution contains interval 𝑛 or it doesn’t contain interval 𝑛

• Weight of optimal solution for only intervals 1,… , 𝑘: 𝑊 𝑘
Define 𝑝 𝑘 ≔ max 𝑖 ∈ 0,… , 𝑘 − 1 ∶ 𝑓 𝑖 ≤ 𝑠 𝑘

• Opt. solution does not contain interval 𝑛: 𝑾 𝒏 = 𝑾 𝒏− 𝟏

Opt. solution contains interval 𝑛: 𝑾 𝒏 = 𝒘 𝒏 +𝑾(𝒑 𝒏)

Algorithm Theory, WS 2015/16 Fabian Kuhn 6

Example

[0,5], w=2

[1,7], 4

[5,9], 4

[10,13], 1

[2,11], 5

[9,12], 2

𝟏

Interval:

𝟐

𝟑

𝟒

𝟓

𝟔 𝒑 𝟔 = 𝟑

𝒑 𝟏 = 𝟎

𝒑 𝟐 = 𝟎

𝒑 𝟑 = 𝟏

𝒑 𝟒 = 𝟎

𝒑 𝟓 = 𝟑

Algorithm Theory, WS 2015/16 Fabian Kuhn 7

Recursive Definition of Optimal Solution

• Recall:
– 𝑊(𝑘): weight of optimal solution with intervals 1,… , 𝑘

– 𝑝 𝑘 : last interval to finish before interval 𝑘 starts

• Recursive definition of optimal weight:

∀𝑘 > 1: 𝑊 𝑘 = max 𝑊 𝑘 − 1 ,𝑤 𝑘 +𝑊 𝑝 𝑘

 𝑊 1 = 𝑤(1)

• Immediately gives a simple, recursive algorithm

Algorithm Theory, WS 2015/16 Fabian Kuhn 8

Running Time of Recursive Algorithm

𝟏

𝟐

𝟑

𝟒

𝟓

𝟔 𝒑 𝟔 = 𝟑

𝒑 𝟏 = 𝟎

𝒑 𝟐 = 𝟎

𝒑 𝟑 = 𝟏

𝒑 𝟒 = 𝟎

𝒑 𝟓 = 𝟑

𝑊(6)

𝑊(5) 𝑊(3)

𝑊(4) 𝑊(3) 𝑊(2) 𝑊(1)

𝑊(3)

𝑊(2)

𝑊(1)

𝑊(1)

𝑊(2) 𝑊(1) 𝑊(1)

𝑊(1)

Algorithm Theory, WS 2015/16 Fabian Kuhn 9

Memoizing the Recursion

• Running time of recursive algorithm: exponential!

• But, alg. only solves 𝑛 different sub-problems: 𝑊 1 ,… ,𝑊(𝑛)

• There is no need to compute them multiple times

Memoization:

• Store already computed values for future use (recursive calls)

Efficient algorithm:

1. 𝑊 0 ≔ 0; compute values 𝑝(𝑖)

2. for 𝑖 ≔ 1 to 𝑛 do

3. 𝑊 𝑖 ≔ max 𝑊 𝑖 − 1 ,𝑤 𝑖 +𝑊[𝑝 𝑖]

4. end

Algorithm Theory, WS 2015/16 Fabian Kuhn 10

Example

Computing the schedule: store where you come from!

𝒘 = 𝟐

𝒘 = 𝟒

𝒘 = 𝟒

𝒘 = 𝟏

𝒘 = 𝟓

𝒘 = 𝟐

𝟏

𝟐

𝟑

𝟒

𝟓

𝟔 𝒑 𝟔 = 𝟑

𝒑 𝟏 = 𝟎

𝒑 𝟐 = 𝟎

𝒑 𝟑 = 𝟏

𝒑 𝟒 = 𝟎

𝒑 𝟓 = 𝟑

𝒘 = 𝟑 𝟕 𝒑 𝟕 = 𝟓

𝒘 = 𝟔 𝟖 𝒑 𝟖 = 𝟒

 𝟎 𝑾: 𝟐 𝟒 𝟔 𝟔 𝟖 𝟖 𝟏𝟏 𝟏𝟐

𝑊[0] 𝑊[1] 𝑊[2] 𝑊[3] 𝑊[4] 𝑊[5] 𝑊[6] 𝑊[7] 𝑊[8]

Algorithm Theory, WS 2015/16 Fabian Kuhn 11

Matrix-chain multiplication

Given: sequence (chain) 𝐴1, 𝐴2, … , 𝐴𝑛 of matrices

Goal: compute the product 𝐴1  𝐴2 …  𝐴𝑛

Problem: Parenthesize the product in a way that minimizes
 the number of scalar multiplications.

Definition: A product of matrices is fully parenthesized if it is

• a single matrix

• or the product of two fully parenthesized matrix products,
surrounded by parentheses.

Algorithm Theory, WS 2015/16 Fabian Kuhn 12

All possible fully parenthesized matrix products of the chain
𝐴1, 𝐴2, 𝐴3, 𝐴4:

(𝐴1 (𝐴2 (𝐴3 𝐴4)))

(𝐴1 ((𝐴2 𝐴3) 𝐴4))

((𝐴1 𝐴2)(𝐴3 𝐴4))

((𝐴1 (𝐴2 𝐴3)) 𝐴4)

(((𝐴1 𝐴2) 𝐴3) 𝐴4)

Example

Algorithm Theory, WS 2015/16 Fabian Kuhn 13

Different parenthesizations

Different parenthesizations correspond to different trees:

𝐴1 𝐴2 𝐴3𝐴4

𝐴1 𝐴2𝐴3 𝐴4

𝐴1𝐴2 𝐴3𝐴4

𝐴1𝐴2 𝐴3 𝐴4

Algorithm Theory, WS 2015/16 Fabian Kuhn 14

Number of different parenthesizations

• Let 𝑃(𝑛) be the number of alternative parenthesizations of
the product 𝐴1 ⋅ … ⋅ 𝐴𝑛:

•

𝑃 1 = 1

𝑃 𝑛 = 𝑃 𝑘 ⋅ 𝑃(𝑛 − 𝑘)

𝑛−1

𝑘=1

, for 𝑛 ≥ 2

𝑃 𝑛 + 1 =
1

𝑛 + 1
2𝑛
𝑛
≈
4𝑛

𝑛 𝜋𝑛
+ 𝑂

4𝑛

𝑛5

𝑃 𝑛 + 1 = 𝐶𝑛 (𝑛
𝑡ℎ Catalan number)

• Thus: Exhaustive search needs exponential time!

Algorithm Theory, WS 2015/16 Fabian Kuhn 15

Multiplying Two Matrices

𝐴 = 𝑎𝑖𝑗 𝑝×𝑞 , 𝐵 = 𝑏𝑖𝑗 𝑞×𝑟 , 𝐴 ⋅ 𝐵 = 𝐶 = 𝑐𝑖𝑗 𝑝×𝑟

𝑐𝑖𝑗 = 𝑎𝑖𝑘𝑏𝑘𝑗

𝑞

𝑘=1

Algorithm Matrix-Mult

Input: (𝑝 × 𝑞) matrix 𝐴, 𝑞 × 𝑟 matrix 𝐵

Output: (𝑝 × 𝑟) matrix 𝐶 = 𝐴 ⋅ 𝐵
1 for 𝑖 ≔ 1 to 𝑝 do
2 for 𝑗 ≔ 1 to 𝑟 do
3 𝐶 𝑖, 𝑗 ≔ 0;
4 for 𝑘 ≔ 1 to 𝑞 do
5 𝐶 𝑖, 𝑗 ≔ 𝐶 𝑖, 𝑗 + 𝐴 𝑖, 𝑘 ⋅ 𝐵[𝑘, 𝑗]

Number of multiplications and additions: 𝒑  𝒒  𝒓

Remark:

Using this algorithm, multiplying
two (𝑛  𝑛) matrices requires 𝑛3

multiplications. This can also be
done using 𝑂(𝑛2.376)
multiplications.

Algorithm Theory, WS 2015/16 Fabian Kuhn 16

Matrix-chain multiplication: Example

Computation of the product 𝐴1 𝐴2 𝐴3 , where

𝐴1 : (50  5) matrix

𝐴2 : (5  100) matrix

𝐴3 : (100  10) matrix

a) Parenthesization ((𝐴1 𝐴2)𝐴3) and 𝐴1 𝐴2𝐴3 require:

𝐴′ = (𝐴1 𝐴2): 𝐴
′′ = (𝐴2𝐴3):

𝐴′𝐴3: 𝐴1𝐴′′:

Sum:

Algorithm Theory, WS 2015/16 Fabian Kuhn 17

Structure of an Optimal Parenthesization

• (𝐴ℓ…𝑟): optimal parenthesization of 𝐴ℓ ⋅ … ⋅ 𝐴𝑟

For some 1 ≤ 𝑘 < 𝑛: 𝑨𝟏…𝒏 = 𝑨𝟏…𝒌 ⋅ 𝑨𝒌+𝟏…𝒏

• Any optimal solution contains optimal solutions for sub-problems

• Assume matrix 𝐴𝑖 is a 𝑑𝑖−1 × 𝑑𝑖 -matrix

• Cost to solve sub-problem 𝐴ℓ ⋅ … ⋅ 𝐴𝑟 , ℓ ≤ 𝑟 optimally: 𝐶(ℓ, 𝑟)

• Then:
𝑪 𝒂, 𝒃 = 𝒎𝒊𝒏

𝒂≤𝒌<𝒃
𝑪 𝒂, 𝒌 + 𝑪 𝒌 + 𝟏, 𝒃 + 𝒅𝒂−𝟏𝒅𝒌 𝒅𝒃

𝑪 𝒂, 𝒂 = 𝟎

Algorithm Theory, WS 2015/16 Fabian Kuhn 18

Recursive Computation of Opt. Solution

Compute 𝐴1 ⋅ 𝐴2 ⋅ 𝐴3 ⋅ 𝐴4 ⋅ 𝐴5:

𝐶(1,5)

𝐶(1,2) 𝐶(1,3) 𝐶(1,4) 𝐶(2,5)

𝐶(2,3) 𝐶(1,2)

𝐶(3,5) 𝐶(4,5)

𝐶(1,3) 𝐶(1,2) 𝐶(2,4) 𝐶(2,3) 𝐶(2,3) 𝐶(2,4) 𝐶(4,5) 𝐶(3,5)

𝐶(4,5) 𝐶(3,4)

𝐶(2,3) 𝐶(1,2) 𝐶(3,4) 𝐶(2,3) 𝐶(3,4) 𝐶(2,3) 𝐶(4,5) 𝐶(3,4)

Algorithm Theory, WS 2015/16 Fabian Kuhn 19

Using Meomization

Compute 𝐴1 ⋅ 𝐴2 ⋅ 𝐴3 ⋅ 𝐴4 ⋅ 𝐴5:

Compute 𝐴1 ⋅ … ⋅ 𝐴𝑛:

• Each 𝐶(𝑖, 𝑗), 𝑖 < 𝑗 is computed exactly once  𝑂 𝑛2 values

• Each 𝐶(𝑖, 𝑗) dir. depends on 𝐶(𝑖, 𝑘), 𝐶(𝑘, 𝑗) for 𝑖 < 𝑘 < 𝑗

Cost for each 𝐶(𝑖, 𝑗): 𝑂(𝑛)  overall time: 𝑶 𝒏𝟑

𝐶(1,2) 𝐶(2,3) 𝐶(3,4) 𝐶(4,5)

𝐶(1,3) 𝐶(2,4) 𝐶(3,5)

𝐶(1,4) 𝐶(2,5)

𝐶(1,5)

Algorithm Theory, WS 2015/16 Fabian Kuhn 20

„Memoization“ for increasing the efficiency of a recursive solution:

• Only the first time a sub-problem is encountered, its solution is
computed and then stored in a table. Each subsequent time that
the subproblem is encountered, the value stored in the table is
simply looked up and returned
 (without repeated computation!).

• Computing the solution: For each sub-problem, store how the
value is obtained (according to which recursive rule).

Dynamic Programming

Algorithm Theory, WS 2015/16 Fabian Kuhn 21

Dynamic Programming

Dynamic programming / memoization can be applied if

• Optimal solution contains optimal solutions to sub-problems
(recursive structure)

• Number of sub-problems that need to be considered is small

Algorithm Theory, WS 2015/16 Fabian Kuhn 22

Remarks about matrix-chain multiplication

1. There is an algorithm that determines an optimal
parenthesization in time

𝑂 𝑛 ⋅ log 𝑛 .

2. There is a linear time algorithm that determines a
parenthesization using at most

1.155 ⋅ 𝐶(1, 𝑛)

multiplications.

