



# Chapter 3 Dynamic Programming

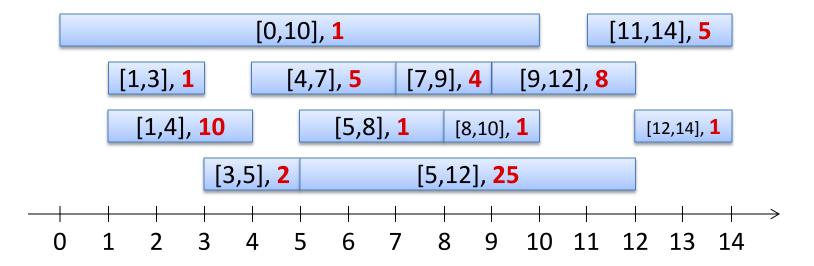
Algorithm Theory WS 2015/16

**Fabian Kuhn** 

#### Weighted Interval Scheduling



- Given: Set of intervals, e.g.
   [0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]
- Each interval has a weight w

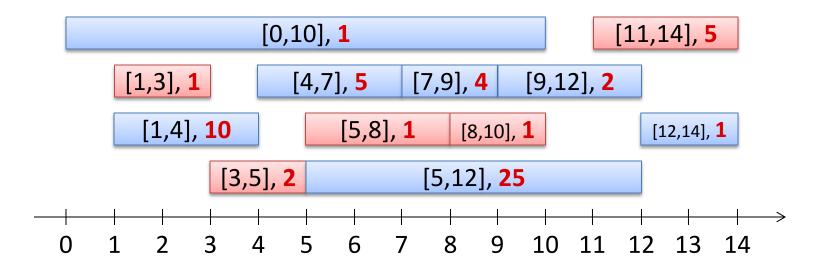


- Goal: Non-overlapping set of intervals of largest possible weight
  - Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping
- Example: Intervals are room requests of different importance

## **Greedy Algorithms**



#### Choose available request with earliest finishing time:



- Algorithm is not optimal any more
  - It can even be arbitrarily bad...
- No greedy algorithm known that works

## Solving Weighted Interval Scheduling



- Interval i: start time s(i), finishing time: f(i), weight: w(i)
- Assume intervals 1, ..., n are sorted by increasing f(i)
  - $-0 < f(1) \le f(2) \le \cdots \le f(n)$ , for convenience: f(0) = 0
- Simple observation: Opt. solution contains interval n or it doesn't contain interval n

#### Solving Weighted Interval Scheduling

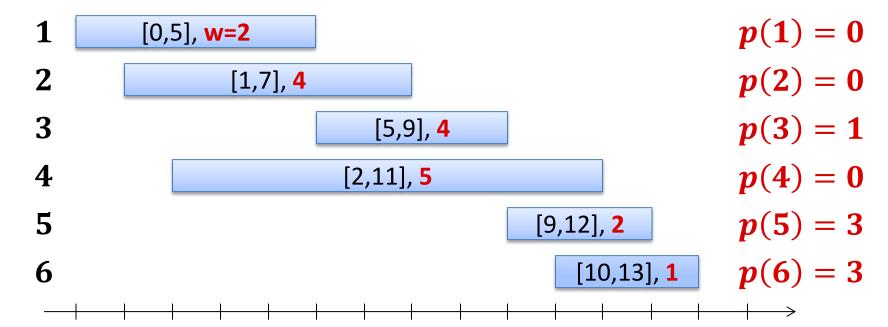


- Interval i: start time s(i), finishing time: f(i), weight: w(i)
- Assume intervals 1, ..., n are sorted by increasing f(i)-  $0 < f(1) \le f(2) \le ... \le f(n)$ , for convenience: f(0) = 0
- Simple observation: Opt. solution contains interval n or it doesn't contain interval n
- Weight of optimal solution for only intervals 1, ..., k: W(k)Define  $p(k) \coloneqq \max\{i \in \{0, ..., k-1\} : f(i) \le s(k)\}$
- Opt. solution does not contain interval n: W(n) = W(n-1)Opt. solution contains interval n: W(n) = w(n) + W(p(n))

#### Example



#### Interval:



## Recursive Definition of Optimal Solution



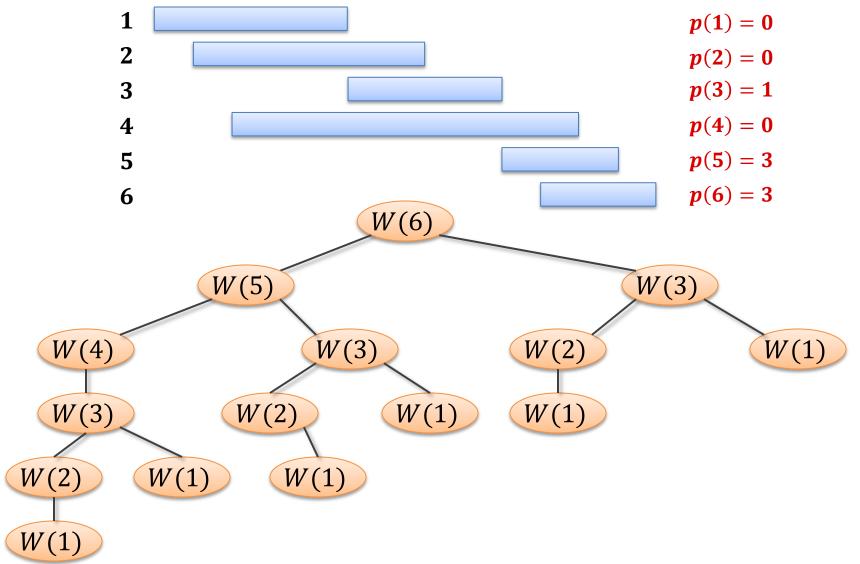
- Recall:
  - -W(k): weight of optimal solution with intervals 1, ..., k
  - -p(k): last interval to finish before interval k starts
- Recursive definition of optimal weight:

$$\forall k > 1: W(k) = \max\{W(k-1), w(k) + W(p(k))\}$$
  
 $W(1) = w(1)$ 

Immediately gives a simple, recursive algorithm

#### Running Time of Recursive Algorithm





#### Memoizing the Recursion



- Running time of recursive algorithm: exponential!
- But, alg. only solves n different sub-problems: W(1), ..., W(n)
- There is no need to compute them multiple times

#### **Memoization:**

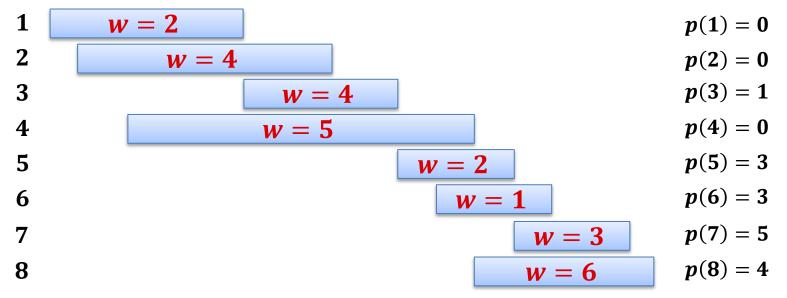
Store already computed values for future use (recursive calls)

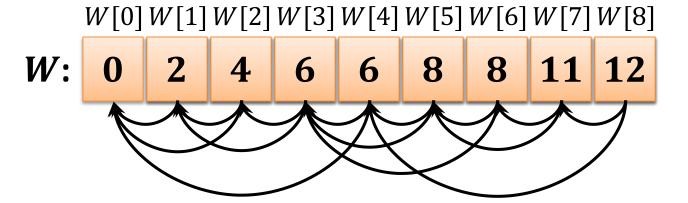
#### **Efficient algorithm:**

- 1. W[0] = 0; compute values p(i)
- 2. for i = 1 to n do
- 3.  $W[i] := \max\{W[i-1], w(i) + W[p(i)]\}$
- 4. end

#### Example







Computing the schedule: store where you come from!

## Matrix-chain multiplication



**Given:** sequence (chain)  $\langle A_1, A_2, ..., A_n \rangle$  of matrices

**Goal:** compute the product  $A_1 \cdot A_2 \cdot ... \cdot A_n$ 

**Problem:** Parenthesize the product in a way that minimizes the number of scalar multiplications.

**Definition:** A product of matrices is *fully parenthesized* if it is

- a single matrix
- or the product of two fully parenthesized matrix products, surrounded by parentheses.

#### Example



All possible fully parenthesized matrix products of the chain  $\langle A_1, A_2, A_3, A_4 \rangle$ :

$$(A_1(A_2(A_3A_4)))$$

$$(A_1((A_2A_3)A_4))$$

$$((A_1A_2)(A_3A_4))$$

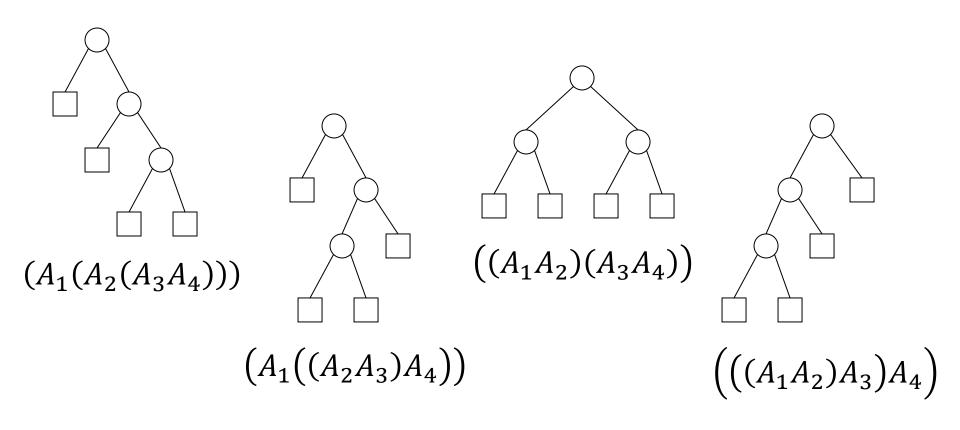
$$((A_1(A_2A_3))A_4)$$

$$(((A_1A_2)A_3)A_4)$$

## Different parenthesizations



#### Different parenthesizations correspond to different trees:



## Number of different parenthesizations



• Let P(n) be the number of alternative parenthesizations of the product  $A_1 \cdot ... \cdot A_n$ :

$$P(1) = 1$$

$$P(n) = \sum_{k=1}^{n-1} P(k) \cdot P(n-k), \quad \text{for } n \ge 2$$

$$P(n+1) = \frac{1}{n+1} {2n \choose n} \approx \frac{4^n}{n\sqrt{\pi n}} + O\left(\frac{4^n}{\sqrt{n^5}}\right)$$

$$P(n+1) = C_n \quad (n^{th} \text{ Catalan number})$$

Thus: Exhaustive search needs exponential time!

#### Multiplying Two Matrices



$$A = (a_{ij})_{p \times q}$$
,  $B = (b_{ij})_{q \times r}$ ,  $A \cdot B = C = (c_{ij})_{p \times r}$   $c_{ij} = \sum_{k=1}^{q} a_{ik} b_{kj}$ 

#### **Algorithm** *Matrix-Mult*

```
Input: (p \times q) matrix A, (q \times r) matrix B

Output: (p \times r) matrix C = A \cdot B

1 for i \coloneqq 1 to p do

2 for j \coloneqq 1 to r do

3 C[i,j] \coloneqq 0;

4 for k \coloneqq 1 to q do

5 C[i,j] \coloneqq C[i,j] + A[i,k] \cdot B[k,j]
```

#### **Remark:**

Using this algorithm, multiplying two  $(n \times n)$  matrices requires  $n^3$  multiplications. This can also be done using  $O(n^{2.376})$  multiplications.

## Matrix-chain multiplication: Example



Computation of the product  $A_1 A_2 A_3$ , where

 $A_1 : (50 \times 5) \text{ matrix}$ 

 $A_2$ : (5 × 100) matrix

 $A_3$ : (100 × 10) matrix

a) Parenthesization  $((A_1A_2)A_3)$  and  $(A_1(A_2A_3))$  require:

$$A' = (A_1 A_2)$$
:

$$A^{\prime\prime}=(A_2A_3):$$

$$A'A_3$$
:

$$A_1A''$$
:

Sum:

#### Structure of an Optimal Parenthesization



•  $(A_{\ell ...r})$ : optimal parenthesization of  $A_{\ell} \cdot ... \cdot A_{r}$ 

For some 
$$1 \le k < n$$
:  $(A_{1...n}) = ((A_{1...k}) \cdot (A_{k+1...n}))$ 

- Any optimal solution contains optimal solutions for sub-problems
- Assume matrix  $A_i$  is a  $(d_{i-1} \times d_i)$ -matrix
- Cost to solve sub-problem  $A_{\ell} \cdot ... \cdot A_{r}$ ,  $\ell \leq r$  optimally:  $C(\ell, r)$
- Then:

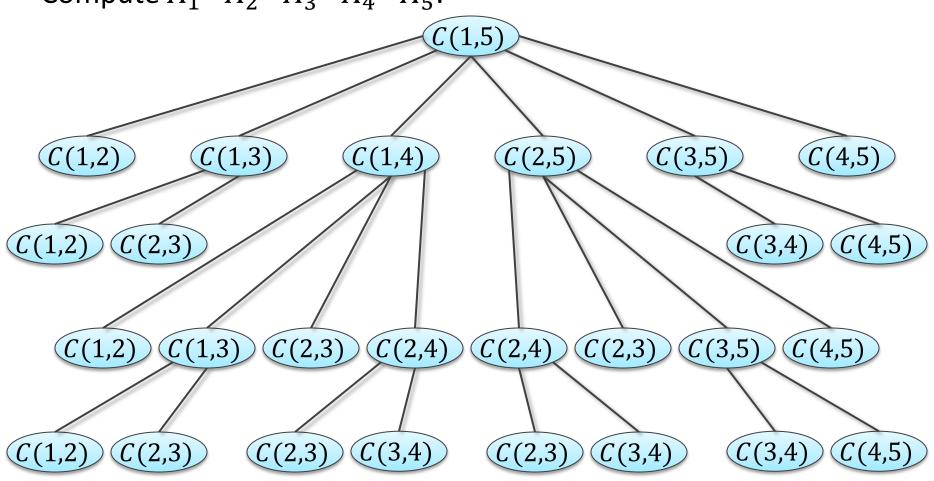
$$C(a,b) = \min_{a \le k < b} C(a,k) + C(k+1,b) + d_{a-1}d_k d_b$$

$$C(a,a)=0$$

#### Recursive Computation of Opt. Solution



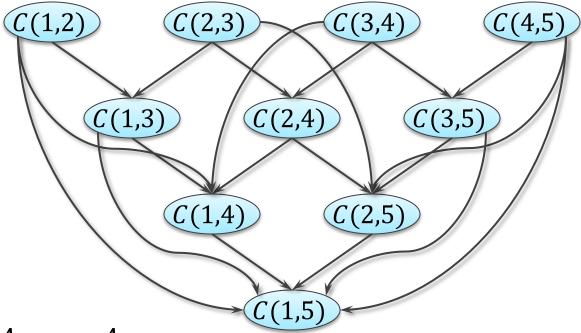
Compute  $A_1 \cdot A_2 \cdot A_3 \cdot A_4 \cdot A_5$ :



#### **Using Meomization**



Compute  $A_1 \cdot A_2 \cdot A_3 \cdot A_4 \cdot A_5$ :



Compute  $A_1 \cdot ... \cdot A_n$ :

- Each C(i,j), i < j is computed exactly once  $\rightarrow O(n^2)$  values
- Each C(i,j) dir. depends on C(i,k), C(k,j) for i < k < j

Cost for each C(i,j):  $O(n) \rightarrow$  overall time:  $O(n^3)$ 

## **Dynamic Programming**



"Memoization" for increasing the efficiency of a recursive solution:

 Only the first time a sub-problem is encountered, its solution is computed and then stored in a table. Each subsequent time that the subproblem is encountered, the value stored in the table is simply looked up and returned

(without repeated computation!).

Computing the solution: For each sub-problem, store how the value is obtained (according to which recursive rule).

#### **Dynamic Programming**



Dynamic programming / memoization can be applied if

- Optimal solution contains optimal solutions to sub-problems (recursive structure)
- Number of sub-problems that need to be considered is small

# Remarks about matrix-chain multiplication



1. There is an algorithm that determines an optimal parenthesization in time

$$O(n \cdot \log n)$$
.

2. There is a linear time algorithm that determines a parenthesization using at most

$$1.155 \cdot \mathcal{C}(1,n)$$

multiplications.