

Chapter 6 Graph Algorithms

Algorithm Theory WS 2015/16

Fabian Kuhn

Example: Flow Network

Flow conservation: $\forall v \in V \setminus \{s, t\}$: $f^{in}(v) = f^{out}(v)$

Flow value: $|f| = f^{out}(s) = f^{in}(t)$

For simplicity: Assume that all capacities are positive integers

Residual Graph

Given a flow network $\underline{G} = (V, E)$ with capacities $\underline{c_e}$ (for $e \in E$) For a flow f on G, define directed graph $\underline{G_f} = (V_f, E_f)$ as follows:

- Node set $V_f = V$
- For each edge e = (u, v) in E, there are two edges in E_f :
 - forward edge e = (u, v) with residual capacity $c_e f(e)$
 - backward edge e' = (v, u) with residual capacity f(e)

Residual Graph: Example

Residual Graph: Example

Flow f

Residual Graph G_f

Residual Graph G_f

Definition:

An augmenting path P is a (simple) <u>s-t-path</u> on the residual graph G_f on which each edge has residual capacity > 0.

bottleneck(P, f): minimum residual capacity on any edge of the augmenting path P

Augment flow f to get flow f':

• For every forward edge (u, v) on P:

 $f'((u,v)) \coloneqq f((u,v)) + bottleneck(P,f)$

• For every backward edge (u, v) on P:

 $f'((v, u)) \coloneqq f((v, u)) - \text{bottleneck}(P, f)$

Augmented Flow

Lemma: Given a flow f and an augmenting path P, the resulting augmented flow f' is legal and its value is

$$f'| = |f| + bottleneck(P, f).$$

Proof:

Ford-Fulkerson Algorithm

• Improve flow using an augmenting path as long as possible:

1. Initially,
$$f(e) = 0$$
 for all edges $e \in E$, $G_f = G$
2. while there is an augmenting *s*-*t*-path *P* in G_f do
3. Let *P* be an augmenting *s*-*t*-path in G_f ;
4. $f' \coloneqq \operatorname{augment}(f, P)$; bottleweck $(P, f) > O$
5. update *f* to be *f'*;

- 6. update the residual graph $G_{f'}$
- 7. **end**;

BURG

FREIL

Ford-Fulkerson Running Time

Theorem: If all edge capacities are integers, the Ford-Fulkerson algorithm terminates after at most <u>*C*</u> iterations, where

Algorithm Theory, WS 2015/16

Fabian Kuhn

Ford-Fulkerson Running Time

Theorem: If all edge capacities are integers, the Ford-Fulkerson algorithm can be implemented to run in O(mC) time.

Proof: <u>Clain</u>: one iter. can be compared in O(m) time 1. compute/update residual graph Gg <<u>first iter</u>: O(m) 2. find augm. path / conclude there is no augm. path Lo s-t path in Gg with res. cap. >0 Dograph travosal (DFS/BFS): O(m) time 3. update flow values : O(n) true

s-t Cuts

Definition:

An *s*-*t* cut is a partition (A, B) of the vertex set such that $s \in A$ and $t \in B$

Cut Capacity

Definition:

The capacity c(A, B) of an s-t-cut (A, B) is defined as

Cuts and Flow Value

Lemma: Let f be any s-t flow, and (A, B) any s-t cut. Then, $|f| = f^{\text{out}}(A) - f^{\text{in}}(A).$ **Proof:** $|f| = f(s) (= f^{in}(t))$ $|f| = f(s) - f^{in}(s)$ $|f| = f^{out}(s) - f^{in}(s)$ $= \sum_{v \in A} \left(f(v) - f(v) \right) \quad (\forall v \in A \setminus ?s? : f(v) = f(v)) \\ = o e x opt for v = s \quad n'$ $= \int_{a}^{\infty t} (A) - \int_{a}^{\infty} (A)$

Fabian Kuhn

Cuts and Flow Value

Lemma: Let f be any s-t flow, and (A, B) any s-t cut. Then, $|f| = f^{out}(A) - f^{in}(A)$. **Lemma:** Let f be any s-t flow, and (A, B) any s-t cut. Then, $|f| = f^{in}(B) - f^{out}(B)$.

Proof:

Proof:

Lemma:

$$|f| = f^{(A)} - f^{(A)}$$

 $\leq c(A,B) - O$

Upper Bound on Flow Value

Let f be any s-t flow and (A, B) any s-t cut. Then $|f| \leq c(A, B)$.

UNI FREIBURG

Lemma: If \underline{f} is an *s*-*t* flow such that there is <u>no augmenting path</u> in G_f , then there is an <u>*s*-*t*</u> cut (A^*, B^*) in *G* for which $|f| = c(A^*, B^*).$

Proof:

Define <u>A</u>*: set of nodes that can be reached from s on a path with positive residual capacities in G_f:

• For $B^* = V \setminus A^*$, (A^*, B^*) is an s - t cut - By definition $s \in \overline{A^*}$ and $t \notin A^*$ - because there is no any m. Path

Algorithm Theory, WS 2015/16

Fabian Kuhn

Lemma: If f is an s-t flow such that there is no augmenting path in G_f , then there is an s-t cut (A^*, B^*) in G for which

Algorithm Theory, WS 2015/16

Fabian Kuhn

Lemma: If f is an s-t flow such that there is no augmenting path in G_f , then there is an s-t cut (A^*, B^*) in G for which

 $|\boldsymbol{f}| = \boldsymbol{c}(\boldsymbol{A}^*, \boldsymbol{B}^*).$

Proof:

Theorem: The flow returned by the Ford-Fulkerson algorithm is a maximum flow.

Proof:

$$f^*: f(ow returned by FF$$

 $\sum cont (A^*, B^*)$
 $S.t. (f^*) = c(A^*, B^*)$
for every flow $f: 1fl \leq c(A^*, B^*)$

Min-Cut Algorithm

Ford-Fulkerson also gives a min-cut algorithm:

Theorem: Given a flow f of maximum value, we can compute an s-t cut of minimum capacity in O(m) time.

Proof: f maximum -> augur. path can find cat (A^{*}, B^{*}) st. $|f| = c(A^{*}, B^{*})$ Lo as before: DFS/BFS on res. souph (from s) La all under reachable from s Lo Att (set of nodes reachable from s) (A^{*}, B^{*}) is an s-t cat with min. capacity because: for every other cut (A, B), we have |f)≤ c(A, B) $|p| = c(A^*, B^*) \leq c(A, B)$

Max-Flow Min-Cut Theorem

Theorem: (Max-Flow Min-Cut Theorem)

In every flow network, the maximum value of an s-t flow is equal to the minimum capacity of an s-t cut.

Theorem: (Integer-Valued Flows)

If all capacities in the flow network are integers, then there is a maximum flow f for which the flow f(e) of every edge e is an integer.

Proof:

FF gives an integes flow

Non-Integer Capacities

What if capacities are not integers?

rational capacities: 🛛 🕻 🤇 🤇

- algorithm still works correctly
- real (non-rational) capacities:
 - not clear whether the algorithm always terminates
- even for integer capacities, time can linearly depend on the value of the maximum flow

(m ⊂)

Slow Execution

• Number of iterations: 2000 (value of max. flow)

Improved Algorithm

FREBURG

Idea: Find the best augmenting path in each step

- best: path P with maximum bottleneck(P, f)
- Best path might be rather expensive to find
 → find almost best path
- Scaling parameter Δ : (initially, $\Delta = \max c_e$ rounded down to next power of 2")
- As long as there is an augmenting path that improves the flow by at least Δ, augment using such a path
- If there is no such path: $\Delta \coloneqq \frac{\Delta}{2}$

Scaling Parameter Analysis

• Δ -scaling phase: Time during which scaling parameter is Δ

Length of a Scaling Phase

Lemma: If f is the flow at the end of the Δ -scaling phase, the maximum flow in the network has value at most $|f| + m\Delta$.

Length of a Scaling Phase

Lemma: The number of augmentation in each scaling phase is at most 2*m*.

_

UNI FREIBURG

Running Time: Scaling Max Flow Alg.

Theorem: The number of augmentations of the algorithm with scaling parameter and integer capacities is at most $O(m \log C)$. The algorithm can be implemented in time $O(m^2 \log C)$.

Strongly Polynomial Algorithm

- Time of regular Ford-Fulkerson algorithm with integer capacities:
- Time of algorithm with scaling parameter: $O(m^2 \log C)$
- $O(\log C)$ is polynomial in the size of the input, but not in n
- Can we get an algorithm that runs in time polynomial in *n*?
- Always picking a shortest augmenting path leads to running time

 $O(m^2n)$

works of cap. are reals

Other Algorithms

34

- There are many other algorithms to solve the maximum flow problem, for example:
- Preflow-push algorithm:
 - Maintains a preflow (\forall nodes: inflow \geq outflow)
 - Alg. guarantees: As soon as we have a flow, it is optimal
 - Detailed discussion in Last year's lecture
 - Running time of basic algorithm: $O(m \cdot n^2)$
 - Doing steps in the "right" order: $O(n^3)$
- Current best known complexity: $oldsymbol{O}(oldsymbol{m}\cdotoldsymbol{n})$
 - For graphs with $m \ge n^{1+\epsilon}$ [King, Rao, Tarjan 1992/1994] (for every constant $\epsilon > 0$)
- For sparse graphs with $m \le n^{16/15-\delta}$ [Orlin, 2013] war. flow in undimeted networks (1+c)-approx. wax flow. O(m. $n_{e}^{O(1)}$) Algorithm Theory, WS 2015/16 Fabian Kuhn

Maximum Flow Applications

- Maximum flow has many applications
- Reducing a problem to a max flow problem can even be seen as an important algorithmic technique
- Examples:
 - related network flow problems
 - computation of small cuts
 - computation of matchings
 - computing disjoint paths
 - scheduling problems
 - assignment problems with some side constraints

- ...

Undirected Edges:

• Undirected edge {*u*, *v*}: add edges (*u*, *v*) and (*v*, *u*) to network

Vertex Capacities:

- Not only edges, but also (or only) nodes have capacities
- Capacity c_v of node $v \notin \{s, t\}$:

$$f^{\rm in}(v) = f^{\rm out}(v) \le c_v$$

• Replace node v by edge $e_v = \{v_{in}, v_{out}\}$:

Minimum *s*-*t* Cut

Given: undirected graph G = (V, E), nodes $s, t \in V$

s-*t* cut: Partition (A, B) of V such that $s \in A, t \in B$

Size of cut (A, B): number of edges crossing the cut

Objective: find *s*-*t* cut of minimum size

Edge Connectivity

Definition: A graph G = (V, E) is k-edge connected for an integer $k \ge 1$ if the graph $G_X = (V, E \setminus X)$ is connected for every edge set

 $X \subseteq E, |X| \leq k - 1.$

Goal: Compute edge connectivity $\lambda(G)$ of G(and edge set X of size $\lambda(G)$ that divides G into ≥ 2 parts)

• minimum set X is a minimum s-t cut for some $s, t \in V$

- Actually for all s, t in different components of $G_X = (V, E \setminus X)$

• Possible algorithm: fix s and find min s-t cut for all $t \neq s$

Fabian Kuhn

Given: undirected graph G = (V, E), nodes $s, t \in V$

s-*t* vertex cut: Set $X \subset V$ such that $s, t \notin X$ and s and t are in different components of the sub-graph $G[V \setminus X]$ induced by $V \setminus X$

Size of vertex cut: |X|

Objective: find *s*-*t* vertex-cut of minimum size

- Replace undirected edge $\{u, v\}$ by (u, v) and (v, u)
- Compute max *s*-*t* flow for edge capacities ∞ and node capacities

 $c_v = 1$ for $v \neq s, t$

- Replace each node v by v_{in} and v_{out} :
- Min edge cut corresponds to min vertex cut in *G*

Fabian Kuhn

Vertex Connectivity

Definition: A graph G = (V, E) is k-vertex connected for an integer $k \ge 1$ if the sub-graph $G[V \setminus X]$ induced by $V \setminus X$ is connected for every edge set

 $X \subseteq V, |X| \le k - 1.$

Goal: Compute vertex connectivity $\kappa(G)$ of G(and node set X of size $\kappa(G)$ that divides G into ≥ 2 parts)

• Compute minimum s-t vertex cut for fixed s and all $t \neq s$

Given: Graph G = (V, E) with nodes $s, t \in V$

Goal: Find as many edge-disjoint *s*-*t* paths as possible

Solution:

• Find max s-t flow in G with edge capacities $c_e = 1$ for all $e \in E$

Flow f induces |f| edge-disjoint paths:

- Integral capacities \rightarrow can compute integral max flow f
- Get |f| edge-disjoint paths by greedily picking them
- Correctness follows from flow conservation $f^{in}(v) = f^{out}(v)$

Given: Graph G = (V, E) with nodes $s, t \in V$

Goal: Find as many internally vertex-disjoint *s*-*t* paths as possible

Solution:

• Find max *s*-*t* flow in *G* with node capacities $c_v = 1$ for all $v \in V$

Flow f induces |f| vertex-disjoint paths:

- Integral capacities \rightarrow can compute integral max flow f
- Get |f| vertex-disjoint paths by greedily picking them
- Correctness follows from flow conservation $f^{in}(v) = f^{out}(v)$

Theorem: (edge version)

For every graph G = (V, E) with nodes $s, t \in V$, the size of the minimum s-t (edge) cut equals the maximum number of pairwise edge-disjoint paths from s to t.

Theorem: (node version)

For every graph G = (V, E) with nodes $s, t \in V$, the size of the minimum s-t vertex cut equals the maximum number of pairwise internally vertex-disjoint paths from s to t

 Both versions can be seen as a special case of the max flow min cut theorem

Baseball Elimination

Team	Wins	Losses	To Play	Against = r_{ij}				
i	w _i	ℓ_i	r _i	NY	Balt.	Т. Вау	Tor.	Bost.
New York	81	70	11	-	2	4	2	3
Baltimore	79	77	6	2	-	2	1	1
Tampa Bay	79	75	8	4	2	-	1	1
Toronto	76	80	6	2	1	1	-	2
Boston	71	84	7	3	1	1	2	-

- Only wins/losses possible (no ties), winner: team with most wins
- Which teams can still win (as least as many wins as top team)?
- Boston is eliminated (cannot win):
 - Boston can get at most 78 wins, New York already has 81 wins
- If for some $i, j: w_i + r_i < w_j \rightarrow$ team i is eliminated
- Sufficient condition, but not a necessary one!

Baseball Elimination

Team	Wins	Losses	To Play	Against = r_{ij}				
i	W _i	ℓ_i	r _i	NY	Balt.	Т. Вау	Tor.	Bost.
New York	81	70	11	-	2	4	2	3
Baltimore	79	77	6	2	-	2	1	1
Tampa Bay	79	75	8	4	2	-	1	1
Toronto	76	80	6	2	1	1	-	2
Boston	71	84	7	3	1	1	2	-

- Can Toronto still finish first?
- Toronto can get 82 > 81 wins, but: NY and Tampa have to play 4 more times against each other
 → if NY wins two, it gets 83 wins, otherwise, Tampa has 83 wins
- Hence: Toronto cannot finish first
- How about the others? How can we solve this in general?

Max Flow Formulation

• Can team 3 finish with most wins?

• Team 3 can finish first iff all source-game edges are saturated

Reason for Elimination

AL East: Aug 30, 1996

Team	Wins	Losses	To Play	Against = r_{ij}				
i	w _i	l _i	r _i	NY	Balt.	Bost.	Tor.	Detr.
New York	75	59	28	-	3	8	7	3
Baltimore	71	63	28	3	-	2	7	4
Boston	69	66	27	8	2	-	0	0
Toronto	63	72	27	7	7	0	-	0
Detroit	49	86	27	3	4	0	0	-

- Detroit could finish with 49 + 27 = 76 wins
- Consider $R = \{NY, Bal, Bos, Tor\}$
 - Have together already won w(R) = 278 games
 - Must together win at least r(R) = 27 more games
- On average, teams in R win $\frac{278+27}{4} = 76.25$ games

Algorithm Theory, WS 2015/16

Fabian Kuhn

Certificate of elimination:

Team $x \in X$ is eliminated by R if $\frac{w(R) + r(R)}{|R|} > w_x + r_x.$

Reason for Elimination

Theorem: Team x is eliminated if and only if there exists a subset $R \subseteq X$ of the teams X such that x is eliminated by R.

Proof Idea:

- Minimum cut gives a certificate...
- If x is eliminated, max flow solution does not saturate all outgoing edges of the source.
- Team nodes of unsaturated source-game edges are saturated
- Source side of min cut contains all teams of saturated team-dest. edges of unsaturated source-game edges
- Set of team nodes in source-side of min cut give a certificate *R*