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Example: Flow Network 
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Notation 

We define: 

𝑓in 𝑣 ≔  𝑓 𝑒

𝑒 into 𝑣

, 𝑓out 𝑣 ≔  𝑓(𝑒)

𝑒 out of 𝑣

 

 

For a set 𝑺 ⊆ 𝑽: 

𝑓in 𝑆 ≔  𝑓 𝑒

𝑒 into 𝑆

, 𝑓out 𝑆 ≔  𝑓(𝑒)

𝑒 out of 𝑆

 

 

Flow conservation: ∀𝑣 ∈ 𝑉 ∖ 𝑠, 𝑡 : 𝑓in 𝑣 = 𝑓out(𝑣) 
 

Flow value: 𝑓 = 𝑓out 𝑠 = 𝑓in(𝑡) 
 

For simplicity: Assume that all capacities are positive integers 
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Residual Graph 

Given a flow network 𝐺 = 𝑉, 𝐸  with capacities 𝑐𝑒 (for 𝑒 ∈ 𝐸) 
 

For a flow 𝑓 on 𝐺, define directed graph 𝐺𝑓 = (𝑉𝑓 , 𝐸𝑓) as follows: 

• Node set 𝑉𝑓 = 𝑉 

• For each edge 𝑒 = (𝑢, 𝑣) in 𝐸, there are two edges in 𝐸𝑓: 

– forward edge 𝑒 = (𝑢, 𝑣) with residual capacity 𝑐𝑒 − 𝑓(𝑒) 

– backward edge 𝑒′ = (𝑣, 𝑢) with residual capacity 𝑓(𝑒) 
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Residual Graph: Example 

 𝑠 

 𝑥 

 𝑢 

 𝑦 

 𝑣 

 𝑤 

 𝑞 

 𝑧 

 𝑡 

15 
20 

20 

15 

10 

10 

20 

15 

20 

15 

15 

15 

10 

5 

20 

20 



Algorithm Theory, WS 2015/16 Fabian Kuhn 6 

Residual Graph: Example 
 

Flow 𝒇 
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Residual Graph: Example 
 

Residual Graph 𝑮𝒇 
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Augmenting Path 
 

Residual Graph 𝑮𝒇 
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Augmenting Path 

Definition: 
An augmenting path 𝑃 is a (simple) 𝑠-𝑡-path on the residual 
graph 𝐺𝑓 on which each edge has residual capacity > 0. 
 

bottleneck(𝑃, 𝑓): minimum residual capacity on any edge of the 
                                  augmenting path 𝑃 
 

Augment flow 𝒇 to get flow 𝒇′: 

• For every forward edge (𝑢, 𝑣) on 𝑃:  
 

𝒇′ 𝒖, 𝒗 ≔ 𝒇 𝒖, 𝒗 + 𝐛𝐨𝐭𝐭𝐥𝐞𝐧𝐞𝐜𝐤 𝑷, 𝒇  
 

• For every backward edge (𝑢, 𝑣) on 𝑃: 
 

𝒇′ 𝒗, 𝒖 ≔ 𝒇 𝒗, 𝒖 − 𝐛𝐨𝐭𝐭𝐥𝐞𝐧𝐞𝐜𝐤(𝑷, 𝒇) 
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Augmented Flow 

Lemma: Given a flow 𝑓 and an augmenting path 𝑃, the resulting 
augmented flow 𝑓′ is legal and its value is 

𝒇′ = 𝒇 + 𝐛𝐨𝐭𝐭𝐥𝐞𝐧𝐞𝐜𝐤 𝑷, 𝒇 . 

Proof: 
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Ford-Fulkerson Algorithm 

• Improve flow using an augmenting path as long as possible:  

 

1. Initially, 𝑓 𝑒 = 0 for all edges 𝑒 ∈ 𝐸, 𝐺𝑓 = 𝐺 

2.  while there is an augmenting 𝑠-𝑡-path 𝑃 in 𝐺𝑓 do 

3.          Let 𝑃 be an augmenting 𝑠-𝑡-path in 𝐺𝑓; 

4.          𝑓′ ≔ augment(𝑓, 𝑃); 

5.          update 𝑓 to be 𝑓′; 

6.          update the residual graph 𝐺𝑓 

7.  end; 
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Ford-Fulkerson Running Time 

Theorem: If all edge capacities are integers, the Ford-Fulkerson 
algorithm terminates after at most 𝐶 iterations, where 

𝐶 =  𝑐𝑒
𝑒 out of 𝑠

. 

Proof: 
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Ford-Fulkerson Running Time 

Theorem: If all edge capacities are integers, the Ford-Fulkerson 
algorithm can be implemented to run in 𝑂(𝑚𝐶) time. 
 

Proof: 
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𝑠-𝑡 Cuts 

Definition: 
An 𝑠-𝑡 cut is a partition (𝐴, 𝐵) of the vertex set such that 𝑠 ∈ 𝐴 
and 𝑡 ∈ 𝐵 
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Cut Capacity 

Definition: 
The capacity 𝑐 𝐴, 𝐵  of an 𝑠-𝑡-cut (𝐴, 𝐵) is defined as 

                                                                                  𝒄 𝑨,𝑩 ≔  𝒄𝒆
𝒆 𝐨𝐮𝐭 𝐨𝐟 𝑨
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Cuts and Flow Value 

Lemma: Let 𝑓 be any 𝑠-𝑡 flow, and (𝐴, 𝐵) any 𝑠-𝑡 cut. Then, 
 

                                                                             𝒇 = 𝒇𝐨𝐮𝐭 𝑨 − 𝒇𝐢𝐧 𝑨 . 

Proof: 
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Cuts and Flow Value 

Lemma: Let 𝑓 be any 𝑠-𝑡 flow, and (𝐴, 𝐵) any 𝑠-𝑡 cut. Then, 
 

                                                                             𝒇 = 𝒇𝐨𝐮𝐭 𝑨 − 𝒇𝐢𝐧 𝑨 . 

Lemma: Let 𝑓 be any 𝑠-𝑡 flow, and (𝐴, 𝐵) any 𝑠-𝑡 cut. Then, 
 

                                                                             𝒇 = 𝒇𝐢𝐧 𝑩 − 𝒇𝐨𝐮𝐭 𝑩 . 

Proof: 
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Upper Bound on Flow Value 

Lemma: 

Let 𝑓 be any 𝑠-𝑡 flow and (𝐴, 𝐵) any 𝑠-𝑡 cut. Then 𝒇 ≤ 𝒄(𝑨,𝑩). 
 

Proof: 
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Ford-Fulkerson Gives Optimal Solution 

Lemma: If 𝑓 is an 𝑠-𝑡 flow such that there is no augmenting path 
in 𝐺𝑓, then there is an 𝑠-𝑡 cut (𝐴∗, 𝐵∗) in 𝐺 for which 
 

𝒇 = 𝒄 𝑨∗, 𝑩∗ . 

Proof: 

• Define 𝑨∗: set of nodes that can be reached from 𝑠 on a path 
with positive residual capacities in 𝐺𝑓: 

 

 

 
 

 

• For 𝐵∗ = 𝑉 ∖ 𝐴∗, (𝐴∗, 𝐵∗) is an 𝑠-𝑡 cut 
– By definition 𝑠 ∈ 𝐴∗ and 𝑡 ∉ 𝐴∗ 
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Ford-Fulkerson Gives Optimal Solution 

Lemma: If 𝑓 is an 𝑠-𝑡 flow such that there is no augmenting path 
in 𝐺𝑓, then there is an 𝑠-𝑡 cut (𝐴∗, 𝐵∗) in 𝐺 for which 
 

𝒇 = 𝒄 𝑨∗, 𝑩∗ . 

Proof: 
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Ford-Fulkerson Gives Optimal Solution 

Lemma: If 𝑓 is an 𝑠-𝑡 flow such that there is no augmenting path 
in 𝐺𝑓, then there is an 𝑠-𝑡 cut (𝐴∗, 𝐵∗) in 𝐺 for which 
 

𝒇 = 𝒄 𝑨∗, 𝑩∗ . 

Proof: 
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Ford-Fulkerson Gives Optimal Solution 

Theorem: The flow returned by the Ford-Fulkerson algorithm is a 
maximum flow. 
 

Proof: 
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Min-Cut Algorithm 

Ford-Fulkerson also gives a min-cut algorithm: 
 

Theorem: Given a flow 𝑓 of maximum value, we can compute an 
𝑠-𝑡 cut of minimum capacity in 𝑂(𝑚) time. 
 

Proof: 
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Max-Flow Min-Cut Theorem 

Theorem: (Max-Flow Min-Cut Theorem) 

In every flow network, the maximum value of an 𝑠-𝑡 flow is 
equal to the minimum capacity of an 𝑠-𝑡 cut. 
 

Proof: 
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Integer Capacities 

Theorem: (Integer-Valued Flows) 

If all capacities in the flow network are integers, then there is a 
maximum flow 𝑓 for which the flow 𝑓 𝑒  of every edge 𝑒 is an 
integer. 
 

Proof: 
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Non-Integer Capacities 

What if capacities are not integers? 

 

• rational capacities: 
– can be turned into integers by multiplying them with large enough integer 

– algorithm still works correctly 

 

• real (non-rational) capacities: 
– not clear whether the algorithm always terminates 

 

• even for integer capacities, time can linearly depend on the value 
of the maximum flow 
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Slow Execution 

 

 

 

 

 

 

 

 

 

 

 

• Number of iterations: 2000 (value of max. flow) 
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Improved Algorithm 

Idea: Find the best augmenting path in each step 

• best: path 𝑃 with maximum bottleneck(𝑃, 𝑓) 

 

• Best path might be rather expensive to find 
          find almost best path 

 

• Scaling parameter 𝚫:  
(initially, Δ = "max 𝑐𝑒 rounded down to next power of 2") 
 

• As long as there is an augmenting path that improves the flow by 
at least Δ, augment using such a path 
 

• If there is no such path: Δ ≔ Δ 2  
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Scaling Parameter Analysis 

Lemma: If all capacities are integers, number of different scaling 
parameters used is ≤ 1 + ⌊log2 𝐶⌋. 

 

 

 

 

 

 

 

• 𝚫-scaling phase: Time during which scaling parameter is Δ 
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Length of a Scaling Phase 

Lemma: If 𝑓 is the flow at the end of the Δ-scaling phase, the 
maximum flow in the network has value at most 𝑓 + 𝑚Δ. 
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Length of a Scaling Phase 

Lemma: The number of augmentation in each scaling phase is at 
most 2𝑚. 
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Running Time: Scaling Max Flow Alg. 

Theorem: The number of augmentations of the algorithm with 
scaling parameter and integer capacities is at most 𝑂(𝑚 log 𝐶). The 
algorithm can be implemented in time 𝑂 𝑚2 log 𝐶 . 
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Strongly Polynomial Algorithm 

• Time of regular Ford-Fulkerson algorithm with integer capacities: 
 

𝑂(𝑚𝐶) 
 

• Time of algorithm with scaling parameter: 
 

𝑂 𝑚2log 𝐶  
 

• 𝑂(log 𝐶) is polynomial in the size of the input, but not in 𝑛 
 

• Can we get an algorithm that runs in time polynomial in 𝑛? 
 

• Always picking a shortest augmenting path leads to running time 
 

𝑂(𝑚2𝑛) 
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Other Algorithms 

• There are many other algorithms to solve the maximum flow 
problem, for example: 
 

• Preflow-push algorithm: 
– Maintains a preflow (∀ nodes: inflow ≥ outflow) 

– Alg. guarantees: As soon as we have a flow, it is optimal 

– Detailed discussion in last year’s lecture 

– Running time of basic algorithm: 𝑂 𝑚 ⋅ 𝑛2  

– Doing steps in the “right” order: 𝑂 𝑛3  
 

• Current best known complexity: 𝑶 𝒎 ⋅ 𝒏  
– For graphs with 𝑚 ≥ 𝑛1+𝜖                       [King,Rao,Tarjan 1992/1994] 

(for every constant 𝜖 > 0) 
 

– For sparse graphs with 𝑚 ≤ 𝑛16 15 −𝛿                               [Orlin, 2013] 
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Maximum Flow Applications 

• Maximum flow has many applications 

 

• Reducing a problem to a max flow problem can even be seen as 
an important algorithmic technique 

 

• Examples: 
– related network flow problems 

– computation of small cuts 

– computation of matchings 

– computing disjoint paths 

– scheduling problems 

– assignment problems with some side constraints 

– … 
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Undirected Edges and Vertex Capacities 

Undirected Edges: 

• Undirected edge {𝑢, 𝑣}: add edges 𝑢, 𝑣  and (𝑣, 𝑢) to network 
 

Vertex Capacities: 

• Not only edges, but also (or only) nodes have capacities 

• Capacity 𝑐𝑣 of node 𝑣 ∉ {𝑠, 𝑡}: 
 

𝑓in 𝑣 = 𝑓out 𝑣 ≤ 𝑐𝑣 
 

• Replace node 𝑣 by edge 𝑒𝑣 = {𝑣in, 𝑣out}: 

 

 𝑣  𝑣in  𝑣out 
𝒄𝒗 
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Minimum 𝑠-𝑡 Cut 

Given: undirected graph 𝐺 = (𝑉, 𝐸), nodes 𝑠, 𝑡 ∈ 𝑉 
 

𝒔-𝒕 cut: Partition (𝐴, 𝐵) of 𝑉 such that 𝑠 ∈ 𝐴, 𝑡 ∈ 𝐵 
 

Size of cut (𝑨,𝑩): number of edges crossing the cut 

 

 

 

Objective: find 𝑠-𝑡 cut of minimum size 
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Edge Connectivity 

Definition: A graph 𝐺 = 𝑉, 𝐸  is 𝑘-edge connected for an integer 
𝑘 ≥ 1 if the graph 𝐺𝑋 = (𝑉, 𝐸 ∖ 𝑋) is connected for every edge set 
 

𝑋 ⊆ 𝐸, 𝑋 ≤ 𝑘 − 1. 

 

 

 

 

Goal: Compute edge connectivity 𝜆(𝐺) of 𝐺  
           (and edge set 𝑋 of size 𝜆(𝐺) that divides 𝐺 into ≥ 2 parts) 

 

• minimum set 𝑋 is a minimum 𝑠-𝑡 cut for some 𝑠, 𝑡 ∈ 𝑉 
– Actually for all 𝑠, 𝑡 in different components of 𝐺𝑋 = (𝑉, 𝐸 ∖ 𝑋)  

 

• Possible algorithm: fix 𝑠 and find min 𝑠-𝑡 cut for all 𝑡 ≠ 𝑠 
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Minimum 𝑠-𝑡 Vertex-Cut 

Given: undirected graph 𝐺 = (𝑉, 𝐸), nodes 𝑠, 𝑡 ∈ 𝑉 
 

𝒔-𝒕 vertex cut: Set 𝑋 ⊂ 𝑉 such that 𝑠, 𝑡 ∉ 𝑋 and 𝑠 and 𝑡 are in 
different components of the sub-graph 𝐺[𝑉 ∖ 𝑋] induced by 𝑉 ∖ 𝑋 
 

Size of vertex cut: |𝑋| 

 

Objective: find 𝑠-𝑡 vertex-cut of minimum size 

• Replace undirected edge {𝑢, 𝑣} by (𝑢, 𝑣) and (𝑣, 𝑢) 

• Compute max 𝑠-𝑡 flow for edge capacities ∞ and node capacities 
 

𝑐𝑣 = 1 for 𝑣 ≠ 𝑠, 𝑡 
 

• Replace each node 𝑣 by 𝑣in and 𝑣out: 
 

• Min edge cut corresponds to min vertex cut in 𝐺 
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Vertex Connectivity 

Definition: A graph 𝐺 = 𝑉, 𝐸  is 𝑘-vertex connected for an integer 
𝑘 ≥ 1 if the sub-graph 𝐺[𝑉 ∖ 𝑋] induced by 𝑉 ∖ 𝑋 is connected for 
every edge set 

𝑋 ⊆ 𝑉, 𝑋 ≤ 𝑘 − 1. 

 

 

 

 

 

Goal: Compute vertex connectivity 𝜅(𝐺) of 𝐺  
           (and node set 𝑋 of size 𝜅(𝐺) that divides 𝐺 into ≥ 2 parts) 

 

• Compute minimum 𝑠-𝑡 vertex cut for fixed 𝑠 and all 𝑡 ≠ 𝑠 
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Edge-Disjoint Paths 

Given: Graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉 

 

Goal: Find as many edge-disjoint 𝑠-𝑡 paths as possible 

 

Solution:  

• Find max 𝑠-𝑡 flow in 𝐺 with edge capacities 𝑐𝑒 = 1 for all 𝑒 ∈ 𝐸 

 

Flow 𝑓 induces 𝑓  edge-disjoint paths: 

• Integral capacities  can compute integral max flow 𝑓 

• Get 𝑓  edge-disjoint paths by greedily picking them 

• Correctness follows from flow conservation 𝑓in 𝑣 = 𝑓out(𝑣) 
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Vertex-Disjoint Paths 

Given: Graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉 

 

Goal: Find as many internally vertex-disjoint 𝑠-𝑡 paths as possible 

 

Solution:  

• Find max 𝑠-𝑡 flow in 𝐺 with node capacities 𝑐𝑣 = 1 for all 𝑣 ∈ 𝑉 

 

Flow 𝑓 induces 𝑓  vertex-disjoint paths: 

• Integral capacities  can compute integral max flow 𝑓 

• Get 𝑓  vertex-disjoint paths by greedily picking them 

• Correctness follows from flow conservation 𝑓in 𝑣 = 𝑓out(𝑣) 
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Menger’s Theorem 

Theorem: (edge version) 
For every graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉, the size of the 
minimum 𝑠-𝑡 (edge) cut equals the maximum number of pairwise 
edge-disjoint paths from 𝑠 to 𝑡. 
 

 

Theorem: (node version) 
For every graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉, the size of the 
minimum 𝑠-𝑡 vertex cut equals the maximum number of pairwise 
internally vertex-disjoint paths from 𝑠 to 𝑡 

 
 

• Both versions can be seen as a special case of the max flow min 
cut theorem 
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Baseball Elimination 

 

 

 

 

 

 
 

• Only wins/losses possible (no ties), winner: team with most wins 

• Which teams can still win (as least as many wins as top team)? 

• Boston is eliminated (cannot win): 
– Boston can get at most 78 wins, New York already has 81 wins 

• If for some 𝑖, 𝑗: 𝑤𝑖 + 𝑟𝑖 < 𝑤𝑗  team 𝑖 is eliminated 

• Sufficient condition, but not a necessary one! 

Team Wins Losses To Play Against = 𝒓𝒊𝒋 

𝒊 𝒘𝒊 ℓ𝒊 𝒓𝒊 NY Balt. T. Bay Tor. Bost. 

New York 81 70 11 - 2 4 2 3 

Baltimore 79 77 6 2 - 2 1 1 

Tampa Bay 79 75 8 4 2 - 1 1 

Toronto 76 80 6 2 1 1 - 2 

Boston 71 84 7 3 1 1 2 - 
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Baseball Elimination 

 

 

 

 

 

 
 

• Can Toronto still finish first? 

• Toronto can get 82 > 81 wins, but: 
NY and Tampa have to play 4 more times against each other 
 if NY wins two, it gets 83 wins, otherwise, Tampa has 83 wins 

• Hence: Toronto cannot finish first 

• How about the others? How can we solve this in general? 

Team Wins Losses To Play Against = 𝒓𝒊𝒋 

𝒊 𝒘𝒊 ℓ𝒊 𝒓𝒊 NY Balt. T. Bay Tor. Bost. 

New York 81 70 11 - 2 4 2 3 

Baltimore 79 77 6 2 - 2 1 1 

Tampa Bay 79 75 8 4 2 - 1 1 

Toronto 76 80 6 2 1 1 - 2 

Boston 71 84 7 3 1 1 2 - 
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Max Flow Formulation 

• Can team 3 finish with most wins? 

 

 

 

 

 

 

 

 

 

 
 

• Team 3 can finish first iff all source-game edges are saturated 
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Reason for Elimination 

 

 

 

 

 

 

 

• Detroit could finish with 49 + 27 = 76 wins 
 

• Consider 𝑅 = {NY, Bal, Bos, Tor} 
– Have together already won 𝑤 𝑅 = 278 games 

– Must together win at least 𝑟 𝑅 = 27 more games 
 

• On average, teams in 𝑅 win 
278+27

4
= 76.25 games 

Team Wins Losses To Play Against = 𝒓𝒊𝒋 

𝒊 𝒘𝒊 ℓ𝒊 𝒓𝒊 NY Balt. Bost. Tor. Detr. 

New York 75 59 28 - 3 8 7 3 

Baltimore 71 63 28 3 - 2 7 4 

Boston 69 66 27 8 2 - 0 0 

Toronto 63 72 27 7 7 0 - 0 

Detroit 49 86 27 3 4 0 0 - 

AL East: Aug 30, 1996 
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Reason for Elimination 

Certificate of elimination: 

𝑅 ⊆ 𝑋, 𝑤 𝑅  ≔ 𝑤𝑖
𝑖∈𝑅

, 𝑟 𝑅 ≔  𝑟𝑖,𝑗
𝑖,𝑗∈𝑅

 

 

 

 

Team 𝑥 ∈ 𝑋 is eliminated by 𝑅 if 
 

𝑤 𝑅 + 𝑟(𝑅)

|𝑅|
> 𝑤𝑥 + 𝑟𝑥 . 
   

 

   
 

#wins of  
nodes in 𝑅 

#remaining games 
among nodes in 𝑅 
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Reason for Elimination 

Theorem: Team 𝑥 is eliminated if and only if there exists a subset 
𝑅 ⊆ 𝑋 of the teams 𝑋 such that 𝑥 is eliminated by 𝑅. 

 

Proof Idea: 

• Minimum cut gives a certificate… 
 

• If 𝑥 is eliminated,  max flow solution does not saturate all 
outgoing edges of the source. 
 

• Team nodes of unsaturated source-game edges are saturated 
 

• Source side of min cut contains all teams of saturated team-dest. 
edges of unsaturated source-game edges 
 

• Set of team nodes in source-side of min cut give a certificate 𝑅 


