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Example: Flow Network
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Notation S% 7&
We define:
frwy= Y fl@, [fUm= ) f(e)

e intov e out of v

O = {CQ) < c,
ForasetS C V:

Fre)= ) f@),  fUS) = Y fe)

e into S e out of S

Flow conservation: Vv € V \ {s,t}: f(v) = f°"(v)

Flow value: || = f°Ut(s) = fI"(t)

For simplicity: Assume that all capacities are positive integers
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Residual Graph

Given a flow network G = (V, E') with capacities c, (for e € E)

For a flow f on G, define directed graph G = (Vf, Er) as follows:
* NodesetlVy =V i
* Foreachedgee = (u,v) in E, there are two edges in Ef:
— forward edge e = (u, v) with residual capacity ¢, — f (e)
— backward edge e’ = (v, u) with residual capaciR/ f(e)_
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Residual Graph: Example
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Residual Graph: Example
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Residual Graph: Example
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Residual Graph G
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Augmenting Path
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Residual Graph G
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Augmenting Path
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Definition:
An augmenting path P is a (simple) s-t-path on the residual
graph G¢ on which each edge has residual capacity > 0.

-

bottleneck(P, f): minimum residual capacity on any edge of the
‘ — augmenting path P
>o

Augment flow f to get flow f':
* For every forward edge (u,v) on P:

f'((w,v)) = f((u,v)) + bottleneck(P, f)

* For every backward edge (u,v) on P: e
f'((v,u)) == f((v,u)) — bottleneck(P, f)
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Augmented Flow
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Lemma: Given a flow f and an augmenting path P, the resulting
augmented flow f' is legal and its value is
If'l = |f] +lbottleneck(P, . ‘

Proof:
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‘Ford-Fulkerson Algorithm
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* Improve flow using an augmenting path as long as possible:

1. Initially, f(e) = Oforalledgese € E, Gr = G

while there is an augmenting s-t-path P in Gf do

2.

3 Letf be an augmenting s-t-path in Gf;

A f/ — augment(f, P),' bahﬁm&(’?,{lbo
5

6

7

update f to be f;
update the residual graph G-

end;
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Ford-Fulkerson Running Time
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Theorem: If all edge capacities are integers, the Ford-Fulkerson
algorithm terminates after at most C iterations, where

-
C = Z Co . .

e out of s S L

Proof: ’C\v\:
AL ol buas, o cacds ecB ¢ K@ s iulegr
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Ford-Fulkerson Running Time
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Theorem: If all edge capacities are integers, the Ford-Fulkerson
algorithm can be implemented to run in O (mC) time.

T -
o
Proof: Lo e(#’-)ﬁ«\g
oA 1 . (/] A (VR K&Q
Clxins, enz Wepr. caw be o p b O
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s-t Cuts
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Definition:
An s-t cut is a partition (4, B) of the vertex set such thats € A4

andt € B
@ 20
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Cut Capacity
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Definition:
The capacity c(A4, B) of an s-t-cut (4, B) is defined as

c(4,B) = Ce.
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Cuts and Flow Value
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Lemma: Let f be any s-t flow, and (4, B) any s-t cut. Then,

Ifl = fo(4) - ().

e e —

9= o 4 ‘;ié

b ™
= 2(2:: - _’{“{vw Q¥V e ANTs3: _‘Q(\n = -’\Zw)')

VeA q-—'}(.,,\;:s §
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Cuts and Flow Value
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Lemma: Let f be any s-t flow, and (4, B) any s-t cut. Then,

f] = foU(4) — f"(A).

Lemma: Let f be any s-t flow, and (4, B) any s-t cut. Then,

fl = f™(B) — fo"(B).

Proof:

wetRc :
%‘“@{ o(vsv.we ?’u}?ﬂ = gl (%)

i £
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Upper Bound on Flow Value

Lemma:
Let f be any s-t flow and (4, B) any s-t cut. Then |f| < c(4, B).
Proof:
m“ T
2= £ W - £ (A
< AR —O fd < cA®)

J %(A) 20
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Ford-Fulkerson Gives Optimal Solution .
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Lemma: If;z‘r is an s-t flow such that there is no augmenting path
in Gy, then there is an s-t cut (A", B”) in G for which

|=]:_| = c(4%, B").

Proof:

. Define:i*: set of nodes that can be reached from s on a path
with positive residual capacities in G¢:

20 7?7 0
S /s0 5
2o

N3

M
e ForB* =V \ A" (A%,B") isan s-t cut -

— By definition s € A* and t ¢ A* =— ‘2=~

oug ™™
\fgre 1> wo 0D
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Ford-Fulkerson Gives Optimal Solution .
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Lemma: If f is an s-t flow such that there is no augmenting path
in G, then there is an s-t cut (A%, B") in G for which

If| = c(A*, B™).
Proof: A‘* R*
O
=4 . sdual X ®
__,,;D/ b/"Zg A ?@,J. ey
\ ’ o | «
L ez
feg. Cap-
\ ¢ o = Ce~£(eﬁ=0
— 0 - _Q'c')=CQ
()= Co o buwel. edgR
(?/ vé-j:;'ﬁ"e )
* ~ out 18, Cop = te)=0o
F R cap (A4 BY)
oo = o
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Ford-Fulkerson Gives Optimal Solution .
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Lemma: If f is an s-t flow such that there is no augmenting path
in G, then there is an s-t cut (A%, B") in G for which

|f| = c(4%, B¥).
Proof:
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Ford-Fulkerson Gives Optimal Solution .
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Theorem: The flow returned by the Ford-Fulkerson algorithm is a
maximum flow.

Proof:

g"‘: low veburuedd g R

Z@ cut (/‘*/g‘?
SA. [ = A7, BY

foe vy Poo ¢ 10) < CATE)
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Min-Cut Algorithm

Ford-Fulkerson also gives a min-cut algorithm:
—_—

Theorem: Given a flow f of maximum value, we can compute an

s-t cut of minimum capacity in O(m) time.
—

Proof:
gmax}wwxw\ —2 Qugua- ?‘“w\

con B ot (ATEBY ab 100 (A%, F)
Loas L)z?me.' ”D?S/K*T-S Du LS. Sempl (.Frv-w\ 97

Lo all uedes teqclheble @(ew. g
La, A* (IQN[ cof wodos feacﬂaag& ?—m«« $>

—_— 14* caun e cow()akoq}“ ®("‘“7 A\\"‘Q
(4% s ow st cut ‘;‘ﬁ“‘ wilu ca(acf«*?
becouse: Gt eveny s cul (4B), cue bave [£)< c(A®)

[g\ =c(;4*,?>k) < c(A®)
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Max-Flow Min-Cut Theorem
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Theorem: (Max-Flow Min-Cut Theorem)

In every flow network, the maximum value of an s-t flow is
equal to the minimum capacity of an s-t cut.

Proof: w\/

1+ e S
<4
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Integer Capacities
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Theorem: (Integer-Valued Flows)

If all capacities in the flow network are integers, then there is a

maximum flow f for which the flow f(e) of every edge e is an
integer.

Proof:

T\:‘? ca%v_eg QA \(ukVZS &Qew
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Non-Integer Capacities
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What if capacities are not integers?

N TQ

 rational capacities: ¢,

—_—

— can be turned into integers by multiplying them with large enough integer
— algorithm still works correctly

* real (non-rational) capacities:
m—

— not clear whether the algorithm always terminates

* even for integer capacities, time can linearly depend on the value

of the maximum flow A
C — > ac
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Slow Execution
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 Number of iterations: 2000 (value of max. flow)
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Idea: Find the best augmenting path in each step
* best: path P with maximum bottleneck(P, f)

* Best path might be rather expensive to find
- find almost best path

A\ alweys a "@ 2
e Scaling parameteré_: =T

(initially, A = "max ¢, rounded down to next power of 2")
- — —

* Aslong as there is an augmenting path that improves the flow by
at least A, augment using such a path

—_—

* If thereis no such path: A := 4/,
—-_—

Algorithm Theory, WS 2015/16 Fabian Kuhn 28



UNI

Scaling Parameter Analysis
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Lemma: If all capacities are integers, number of different scaling

parameters used is < 1 + |log, C|.

Cluax b wak. edee cap. \‘\

w \ha“v& 'grc JL Q- CQ < C.
\.—Q.Szcwxl

o csC
207 e = el

* A-scaling phase: Time during which scaling parameter is A

ey g

'ﬂ:?hases A Ef gt\a‘a‘& ‘ O("O
C)(&&c) R w* 4o (’*Q

‘“
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Length of a Scaling Phase

Lemma: Iff is the flow at the end of the A scaling phase, the
maximum flow in the network has value at most |f| + mA.
—_— = T

‘g*\ < lfl{- AN o(’.QFM ot cut (A,'—E)

v-.' res. Cq?- éb

7,13/ A
T . 44A

\Q\-} wA < Ch{?('z‘c-,@
|2\ & cap (X E)
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S.Cf(AlB7 - wd)
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Length of a Scaling Phase
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Lemma: The number of augmentation in each scaling phase is at
most 2m.

Q‘l’ U*-Q ‘Of&%\m}ua o{ {’E‘»L - Qtﬂ.b\ué ‘)Las,z
Lb & tha &Mo{ Yo 20 — sading f(mm
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D
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Running Time: Scaling Max Flow Alg.
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Theorem: The number of augmentations of the algorithm with
scaling parameter and integer capacities is at most O(mlog C). The
algorithm can be implemented in time 0 (m? log C).
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Strongly Polynomial Algorithm
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* Time of regular Ford-Fulkerson algorithm with integer capacities:
0O(mC)

* Time of algorithm with scalihg p\arameter:
(
0(m?log C)

—

* O(log() is polynomial in the size of the input, but notinn

 Can we get an algorithm that runs in time polynomial in n?

* Always picking a shortest augmenting path leads to running time
0(m®n)

—_— warks vg Cap. @re veals
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Other Algorithms
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* There are many other algorithms to solve the maximum flow
problem, for example:

* Preflow-push algorithm:
— Maintains a preflow (V nodes: inflow > outflow)

—

— Alg. guarantees: As soon as we have a flow, it is optimal
202/.2

— Detailed discussion in dastgeesrs lecture
— Running time of basic algorithm: O0(m - n?)
— Doing steps in the “right” order: 0(n3)

e Current best known complexity: O(m - n)

— For graphs with m > nlte [King,Rao,Tarjan 1992/1994]
(for every constant € > 0) -

— For sparse graphs with m < n16/15-6 [Orlin, 2013]
YD z.(bco e uug.‘tm‘-wq MMLQ (1*43 —aQgNX. wak Q(W O(w\ . V\OQ
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Maximum Flow Applications
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 Maximum flow has many applications

* Reducing a problem to a max flow problem can even be seen as
an important algorithmic technique

* Examples:

— related network flow problems

— computation of small cuts

— computation of matchings

— computing disjoint paths
— scheduling problems
— assignment problems with some side constraints
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Undirected Edges and Vertex Capacities  _
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Undirected Edges:
* Undirected edge {u, v}: add edges (u, v) and (v, u) to network

Vertex Capacities:
* Not only edges, but also (or only) nodes have capacities

* Capacity ¢, of node v & {s, t}:
fin@) = £ ) <

* Replace node v by edge e, = {Vip, Vout}:
e
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Minimum s-t Cut

Given: undirected graph ¢ = (V,E), nodes s, t € V
s-t cut: Partition (A,B) of Vsuchthats € A,t € B

Size of cut (A4, B): number of edges crossing the cut

Objective: find s-t cut of minimum size

Algorithm Theory, WS 2015/16 Fabian Kuhn
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Edge Connectivity
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Definition: A graph G = (V,E) is k-edge connected for an integer
k = 1if the graph Gy = (V,E \ X) is connected for every edge set

XCE|X|<k-1.

Goal: Compute edge connectivity A(G) of G
(and edge set X of size A(G) that divides G into = 2 parts)

* minimum set X is a minimum s-t cut forsome s,t €V
— Actually for all s, t in different components of Gy = (V,E \ X)

* Possible algorithm: fix s and find min s-t cut forallt # s
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Minimum s-t Vertex-Cut
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Given: undirected graph ¢ = (V,E), nodes s, t € V

s-t vertex cut: Set X € V suchthats,t € X and sand t are in
different components of the sub-graph G[V \ X]induced by V' \ X

Size of vertex cut: | X|

Objective: find s-t vertex-cut of minimum size
* Replace undirected edge {u, v} by (u, v) and (v, u)
 Compute max s-t flow for edge capacities co and node capacities

c, =1forv #s,t
* Replace each node v by v;, and v ¢:

* Min edge cut corresponds to min vertex cut in G
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Vertex Connectivity
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Definition: A graph G = (V,E) is k-vertex connected for an integer
k = 1if the sub-graph G[V \ X] induced by V' \ X is connected for
every edge set

XCV, |X|<k-1.

Goal: Compute vertex connectivity k(G ) of G
(and node set X of size k(G) that divides G into = 2 parts)

 Compute minimum s-t vertex cut for fixed sand allt # s
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Edge-Disjoint Paths
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Given: Graph G = (V,E) withnodes s,t € I/
Goal: Find as many edge-disjoint s-t paths as possible

Solution:
* Find max s-t flow in G with edge capacitiesc, = 1 foralle € E

Flow f induces |f| edge-disjoint paths:
* Integral capacities = can compute integral max flow f
* Get |f| edge-disjoint paths by greedily picking them

e Correctness follows from flow conservation f1(v) = f°ut(v)
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Vertex-Disjoint Paths
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Given: Graph G = (V,E) withnodes s,t € I/
Goal: Find as many internally vertex-disjoint s-t paths as possible

Solution:
* Find max s-t flow in G with node capacitiesc, = 1 forallv eV

Flow f induces |f| vertex-disjoint paths:
* Integral capacities = can compute integral max flow f
* Get |f| vertex-disjoint paths by greedily picking them

e Correctness follows from flow conservation f1(v) = f°ut(v)
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Menger’s Theorem
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Theorem: (edge version)

For every graph G = (V, E) with nodes s,t € I/, the size of the
minimum s-t (edge) cut equals the maximum number of pairwise
edge-disjoint paths from s to t.

Theorem: (node version)

For every graph G = (V, E) with nodes s,t € I/, the size of the
minimum s-t vertex cut equals the maximum number of pairwise
internally vertex-disjoint paths from s to ¢t

* Both versions can be seen as a special case of the max flow min
cut theorem
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Baseball Elimination
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Team Wins Losses To Play Against = 1;;
i w; ?; T; NY Balt. T. Bay
New York 81 70 11 - 2 4 2 3
Baltimore 79 77 6 2 - 2 1 1
Tampa Bay 79 75 8 4 2 - 1 1
Toronto 76 80 6 2 1 1 - 2
Boston 71 84 7 3 1 1 2 -

* Only wins/losses possible (no ties), winner: team with most wins

* Which teams can still win (as least as many wins as top team)?
* Boston is eliminated (cannot win):

— Boston can get at most 78 wins, New York already has 81 wins

* Ifforsomeli,j: w; +1; <w; 2 team i is eliminated

» Sufficient condition, but not a necessary one!
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Baseball Elimination
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Team Wins Losses To Play Against = 1;;
i w; ?; T; NY Balt. T. Bay
New York 81 70 11 - 2 4 2 3
Baltimore 79 77 6 2 - 2 1 1
Tampa Bay 79 75 8 4 2 - 1 1
Toronto 76 80 6 2 1 1 - 2
Boston 71 84 7 3 1 1 2 -

e (Can Toronto still finish first?

* Toronto can get 82 > 81 wins, but:
NY and Tampa have to play 4 more times against each other
- if NY wins two, it gets 83 wins, otherwise, Tampa has 83 wins

* Hence: Toronto cannot finish first
* How about the others? How can we solve this in general?
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Max Flow Formulation
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e Canteam 3 finish with most wins?

Remaining number team
of games between
the 2 teams

Number of wins team i can
game nodes have to not beat team 3

nodes

* Team 3 can finish first iff all source-game edges are saturated
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Reason for Elimination
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AL East: Aug 30, 1996
Team Wins Losses To Play Against = 1;;
i w; ?; T; \'\ Balt. Bost. Tor

New York 75 59 28 - 3 8 7 3
Baltimore 71 63 28 3 - 2 7 4
Boston 69 66 27 8 2 - 0 0
Toronto 63 72 27 7 7 0 - 0
Detroit 49 86 27 3 4 0 0 -

 Detroit could finish with 49 4+ 27 = 76 wins
* Consider R = {NY, Bal, Bos, Tor}

— Have together already won w(R) = 278 games

— Must together win at least ¥(R) = 27 more games

* On average, teamsin R win

Algorithm Theory, WS 2015/16
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Reason for Elimination
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Certificate of elimination:

r(R) = z Tij

R C X, W(R) = Wi,
IER [,jER
w W
#wins of #remaining games
nodesin R among nodesin R

Team x € X is eliminated by R if
w(R) + r(R)
R|

> Wy T Ty.

Algorithm Theory, WS 2015/16 Fabian Kuhn
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Reason for Elimination
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Theorem: Team x is eliminated if and only if there exists a subset
R € X of the teams X such that x is eliminated by R.

Proof Idea:
* Minimum cut gives a certificate...

 If xiseliminated, max flow solution does not saturate all
outgoing edges of the source.

 Team nodes of unsaturated source-game edges are saturated

 Source side of min cut contains all teams of saturated team-dest.

edges of unsaturated source-game edges

e Set of team nodes in source-side of min cut give a certificate R
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