Albert-Ludwigs-Universitét, Inst. fiir Informatik
Prof. Dr. Fabian Kuhn
M. Ahmadi, O. Saukh, A. R. Molla November 23, 2015

Algorithm Theory, Winter Term 2015/16
Problem Set 4 - Sample Solution

Exercise 1: Filling Two Knapsacks (6 points)

In this problem, we consider a variation of the knapsack problem, where we have two instead of only
one knapsack. Formally, we have items 1,...,n and each item ¢ has a positive integer weight w; € N
and a positive value v; > 0. Further, we have two knapsacks of capacities W; and W5. We need to
pack the items into the knapsacks such that

e Each item is in at most one of the knapsacks
e For j € {1,2}, the total weight of the items in knapsack j is at most W;.

e The total value of the items that are packed in either knapsack is maximized.

(a) (2 points) When first looking at the problem, one could think that it is equivalent to the standard
knapsack problem with one knapsack of capacity W’ := Wj + Ws. Prove that this is not true
by showing that in some cases, the total value that can be packed into one knapsack of capacity
W' = W1+ W5 can be arbitrarily larger than the total value that can be packed into two knapsacks
of capacities W7 and Ws.

(b) (4 points) Give a dynamic programming algorithm that optimally solves the problem (for integer
weights). What is the running time of your algorithm?

Solution

a) Consider three items available for filling knapsack: (Wi, 1), (Ws,1) and (W) + Wa, k), where k > 2
is arbitrary large. If we consider two knapsacks with capacities W1 and W5 and these three items,
the optimal solution for this problem instance is to pack first element into first knapsack and the
second into the second one, what gives the total value of 2. It is easy to see that the third item of
weight W7 4+ W5 can not be packed into knapsacks of capacity W71 or Wy individually, but to the
knapsack of capacity W1 + Ws. Moreover, we can choose k arbitrarily large. Therefore, the total
value that can be packed into one knapsack of capacity Wy + Wy is arbitrarily larger than the total
value (i.e., 2) that can be packed into two knapsacks of capacities W; and Wha.

b) The solution is similar to the knapsack problem in the lecture notes, where optimal solution is
obtained from the optimal solutions of the sub-problems. Only, instead of one knapsack, now
we have two knapsacks. Let OPT(k,z,y) denote optimal value (solution) achievable with items
1,...,k and two knapsacks of capacities x and y. We define

Vk e {0,1,....,n}: OPT(k,0,0) =0

and
Ve e {0,1,..., Wi},Vy € {0,1,...,Wa}: OPT(0,z,y) =0.

Assume now, that all optimal solutions for all capacities up to x and y, respectively, for the first
and second knapsack and also for the first £ — 1 items are known.

Let us now consider the k" item. It can either be ignored (not get picked into any of the knapsacks),
or it is picked into one of the knapsacks. For each of these cases one of the following holds:

(a) If k" item is not picked, then
OPT(k,x,y) = OPT(k—1,z,y).
(b) If the item is picked into the first knapsack, then
OPT(k,z,y) = OPT(k — 1,2 — wg,y) + vg.
(c) If the item is picked into the second knapsack, then
OPT(k,z,y) = OPT(k — 1,z,y — wg) + vg.

Since we are looking for an optimal solution — the largest possible value inside of both knapsacks
— we get a recursive formula for our problem:

OPT(k,z,y) = max {OPT(k: —1,z,y9),
OPT(k -].,.’E - wkvy) + v,
OPT(k —1,z,y —wg) + vk}

In order to solve this problem with a dynamic programming approach, it is proposed to fill out a
3D table of size n x W7 x Wy and fill it using the recurrence relation above row-by-row. The answer
to our problem will be in the last cell of this table.

Running Time: It is easy to see that the table which needs to be filled is a three dimensional
matrix with size O(n - Wy - Wa). Since the time for calculating each table entry is constant, the
total running time is O(nW;Ws).

Exercise 2: Game Strategy (6 points)

Consider the following two-player game: There is a row of n objects (assuming n is even) with values
v1,V9,...,U,. In the game, the two players make moves alternatively. In each odd move, the first
player either selects the first or the last object of the row and removes it permanently from the row.
In even turns, the opponent plays the game in the same way. Each time the player picks some object,
it receives its value.

a) (4 points) Devise a dynamic programming algorithm to determine the maximum value that the
first player (i.e., the player starting the game) can receive by the end of the game.

b) (2 points) What is the running time for the algorithm?

Solution

a) Let us define P(i,j) to be the maximum value that a player (any player!) can get by playing on
successive objects starting from object ¢ and ending with object j, inclusively, by making the first
move. Suppose the first player chooses object ¢ with value v;, and the remaining objects in the row
are objects ¢+ 1 to 5. The opponent either chooses object i+ 1 or object j. Note that the opponent
is smart enough and always chooses the object which yields the minimum value for the first player.
If the opponent takes object 7 + 1, the remaining objects are objects ¢ + 2 to j, on which the first
player’s maximum value is denoted by P(i+2, j). On the other hand, if the opponent takes object

J, the maximum is P(i + 1,j — 1). Therefore, the maximum amount first player can get when he
chooses object i is
v +min{P(i + 2, j), P(i+1,7—1)}.

Similarly, the maximum amount first player can get if chooses object j is
vj +min{P(i+1, j—-1), P>, j —2)}.
Concluding from the above statements, the recurrence relation for an optimal solution is as follows.
P(i,j) = max {v; + min{P(i + 2, j), P(i+ 1, j — 1)}, v; + min{P(i + 1, j — 1), P(i, j — 2)} }
And the base cases are

P(iyi) =v; and P(i,i+ 1) = max{v;, vit1}.

Now, let us use this formula for dynamic programming approach, since it can help us avoid com-
puting the same optimal solutions for the subproblems multiple times. To solve the problem, we
need to fill a 2D table of size n x n, where entry [i, j] in the table will contain the optimal solution
OPT(i,j).

First, we initialize our table with zeros and fill it afterwords using the following strategy. On each
iteration k of filling the table, we compute P(i,j) using the aforementioned recurrence relation for
all i and j, such that i — j = k and 4 < j. Our result in table is in place [1,n].

From design of this algorithm, we can see the only thing that has to be done is filling out the table
of size n x n. Calculating each table entry takes a constant time, therefore, filling out the whole
table takes O(n?).

