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Algorithm Theory, Winter Term 2015/16

Problem Set 6 - Sample Solution

Exercise 1: Amortized Analysis (4 points)

We are given a data structure D, which supports the operations put and flush. The operation put

stores a data item in D and has a running time of 1. Further, if D contains k ≥ 0 items, the operation
flush deletes dk/2e of the k data items stored in D and its running time is equal to k.
Prove that both operations have constant amortized running time by using the potential function
method.

Solution

Goal:
O(1) amortized time per operation.

Intuition:
Flushing every item costs at most 2. Hence, a potential function should be increased by at least 2
whenever we put an item. Therefore, we are guaranteed to have enough potential to do a flush

operation.

Definition of potential function:
A potential function is a function mapping a possible configuration of the data structure to a non
negative real number. It is important that the potential function can be computed from the status of
the data structure. In particular the information about previous operations that have been performed
is not necessary to determine its value.
Define Φ = 2N , where N is the current number of elements in the data structure D.

Correctness of potential function:
The above potential function is never less than 0 since the number of elements in D can not be negative.

Amortized cost for i-th operation:
For the analysis, fix an arbitrary sequence of operations. Then let Ni−1 denote the number of elements
in D before the i-th operation and Ni the number of elements after the i-th operation 1. In the
following ai and ti are amortized and actual costs, respectively, for operation i. For the i-th operation
we consider the cases that it is a put or a flush operation separately:

If the i-th operation is put, then:

Ni = Ni−1 + 1.

ti = 1 (the actual cost of operation put).

ai = ti + Φi − Φi−1 = 1 + 2Ni−1 + 2− 2Ni−1 = 3 ∈ O(1).

1Ni depends on the type of operation that is performed in step i. Thus Ni differs in the two considered cases
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If the i-th operation is flush, then:

Ni = Ni−1 − dNi−1/2e.
ti = Ni−1 (the actual cost of operation flush) as given in the exercise.

ai = ti + Φi − Φi−1 = Ni−1 + (2Ni−1 − 2dNi−1/2e)− 2Ni−1 = Ni−1 − 2dNi−1/2e ≤ 0 ∈ O(1).

Hence, the amortized costs for both operations put and flush are constant.

Exercise 2: Union-Find (4+4 points)

(a) In the lecture the union-by-size heuristic was introduced to guarantee shallow trees when imple-
menting a Union-Find data structure. Another heuristic that can be used for union(x,y) is the
union-by-rank heuristic. For the heuristic, the rank of a tree is defined as follows:

• The rank r(T ) of a tree T consisting of only one node is 0.

• When joining trees T1 and T2 by attaching the root of tree T2 as a new child of the root of
tree T1, the rank of the new combined tree T is defined as r(T ) := max{r(T1), r(T2) + 1}.

When applying the union-by-rank heuristic, whenever combining two trees into one tree (as the
result of a union operation), we attach the tree of smaller rank to the tree of larger rank (if both
trees have the same rank, it does not matter which tree is attached to the other tree). Provide
pseudo-code for the union(x,y) operation when using the union-by-rank heuristic.

Show that when implementing a Union-Find data structure by using disjoint-set forests with the
union-by-rank heuristic, the height of each tree is at most O(log n).

(b) Demonstrate that the above analysis is tight by giving an example execution (of merging n elements
in that data structure) that creates a tree of height Θ(log n). Can you even get a tree of height
blog2 nc?

Solution

a) p[x] denotes the parent of node x, and h[x] denotes the rank of node x. The algorithm returns
the representative of the set union(x,y).

Algorithm 1: Union(x,y)

r := Find(x);
q := Find(y);
if r == q then

return r;

if h[q] > h[r] then
p[r] = q;
return q;

else
p[q] = r;
if h[q] = h[r] then

h[r] := h[r] + 1;

return r;

Given a tree T in the union-find data structure with rank h = h(T ) one needs to show that |T | ≥ 2h.2

We prove this result by induction on the rank of the tree:

2If we do not use path compression the rank equals the height. As the height only becomes smaller with the help of
path compression the result still holds for union-find data structure with path compression.
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Induction Start: Trees of rank 0 do have 1 node.
Induction Hypothesis: Let h be arbitrary but fixed such that |Tk| ≥ 2k holds for all trees Tk with
rank k ≤ h.
Induction Step: Now let T be any tree with rank h + 1. Then T was created by the union of two
trees T1 and T2 both with rank h. (This point is essential: The union procedure is the only one which
changes the rank. The rank can only grow when in the union of two trees with equal rank. The rank
increases at most by one.).

|T | = |T1|+ |T2|
I.H.
≥ 2h + 2h = 2h+1.

The result follows by induction.

b) Let us first define a binomial tree. A binomial tree Bk, for any k ≥ 0, is defined as follows:
B0 is a single node. For any k > 0, Bk is a tree with a single node (as the root of the tree) which has
k subtrees, B0, B1, . . . , Bk−1.

A combination of Binomial trees will lead to a configuration of the union-find data structure of height
log2(n), answering both questions in the affirmative:
Start with n = 2k trees B0, combine them to n/2 trees B1. Grouping them in pairs and combining
them again will give n/4 trees of type B2. Continuing like that will result in a single Bk, which, as
we know from the lecture, has height k = log2 n. This gives possitive answer to both questions.
Let n be a power of 2. Then a sequence of operations is given by:

Algorithm 2: Results in a Union-Find Data Structure Configuration with height log2(n)

/* Create the trees B0 */

for i=0 to n-1 do
makeSet(i);

/* Merge the trees. */

for i = 1 to log2(n) do
for j = 0 to n

2i
− 1 do

union(j · 2i,j · 2i + 2i−1);

Notice that the find operation (in this example execution!) is always performed on the represen-
tative of a set. Thus the path compression is never used.

3


