
Albert-Ludwigs-Universität, Inst. für Informatik
Prof. Dr. Fabian Kuhn
M. Ahmadi, A. R. Molla, O. Saukh February 17, 2016

Algorithm Theory, Winter Term 2015/16

Problem Set 14 - Sample Solution

Exercise 1: All-prefix-sums on Multi-dimensional Matrices (6 points)

In this exercise, we consider a generalization of the the all-prefix-sums problem discussed in the lecture.
We study the following all-prefix-sums problem defined on a d-dimensional array.
We are given a n × n × · · · × n array A with entries ai1,i2,...,id (for ij ∈ {1, . . . , n}). The goal is to
calculate the all-prefix-sums array S with entries si1,i2,...,id which are defined as follows

si1,i2,...,id :=

i1∑
j1=1

i2∑
j2=1

· · ·
id∑

jd=1

aj1,j2,...,jd

Note that for d = 1, the problem is the usual all-prefix-sums problem from the lecture.

(a) (3 points) To warm up, we first consider the case d = 2. Give an efficient algorithm to solve the
2-dimensional all-prefix-sums problem. What are the work T1 and span T∞ of your solution.

Hint: The problem can be solved by performing 2n standard all-prefix-sums computations.

(b) (2 points) Generalize the above algorithm to d ≥ 2 dimensions. What are work T1 and span T∞
of the resulting parallel algorithm?

(c) (1 points) What is the minimum number of processors needed such that asymptotically, the
maximum possible speed-up can be achieved?

Solution

(a) For d = 2, we can think of A as a 2-dimensional matrix of order n× n. The (i, j)th entry of A
is ai,j . By the definition, the (i, j)th entry of all-prefix-sums matrix S is si,j :=

∑i
k=1

∑j
l=1 ak,l.

That is, si,j is the sum of all entries of A with indices in [1, i]× [1, j]. We can write si,j as

si,j = (a1,1 + a2,1 + · · ·+ ai,1) + (a1,2 + a2,2 + · · ·+ ai,2) + · · ·+ (a1,j + a2,j + · · ·+ ai,j)

= s̄i,1 + s̄i,2 + · · ·+ s̄i,j ,

where s̄i,k = (a1,k + a2,k + · · · + ai,k) is the sum of the first i entries of the k-th column of A.
Therefore, si,j is the sum of the first j entries of the ith row of the matrix S̄ = (s̄i,j). Notice
that any column k of the matrix S̄ is the all-prefix-sums of the entries in the kth column of A.
Hence, we first construct S̄ by computing the all-prefix-sums of all the columns of A separately.
We can do this in parallel for each column of A. Since A has n columns, we have n instances of
all-prefix-sums problem. Using the parallel algorithm of the lecture, we can compute all the n
all-prefix-sums in parallel. We thus compute the n columns of S̄ in parallel.

Now the final matrix S is the all-prefix-sums of each rows of the matrix S̄. Again we can use the
parallel all-prefix-sums algorithm of the lecture for each rows of S̄ in parallel and compute S.
We know that (from the lecture), for one all-prefix-sums instance, total work is T1 = n and span

1

is T∞ = log n. Here we compute 2n such instances: n for computing S̄ and n for computing the
final S. Hence, the total work will be T1 = 2n2 and the span will be T∞ = 2 log n, since the final
S computation depends on the computation of the intermediate matrix S̄ (each dependant tree
height is log n).

(b) The generalization is straightforward. Let us first look at the case for d = 3. We can think of it as
a combination of two phases: first compute n instances of 2-dimensional all-prefix-sums problems
and then compute the final all-prefix-sums array corresponding to the third dimension. We first
solve these n 2-dimensional all-prefix-sums in the similar way as done in question (a). In fact,
we can compute all the n instances in parallel. The work for this phase would be n · 2n2 = 2n3.
Then we have to compute the all-prefix-sums corresponding to the third dimension. There are
again n2 instances of 1-dimensional all-prefix-sums problems. This will give us the final all-
prefix-sums array for d = 3. The total work will be T1 = 2n3 + n2 · n = 3n3. The span will
be T∞ = 2 log n + logn = 3 log n, since the computation of the all-prefix-sums corresponding
to the third dimension depends on the previous n instances of 2-dimensional all-prefix-sums
computations. In the similar way, we can extend the solution for general d ≥ 2. We can do step
by step as above: first compute n instances of (d− 1)-dimensional all-prefix-sums problems and
then compute the final all-prefix-sums array corresponding to the dth dimension. The total work
will be T1 = dnd and the span will be T∞ = d log n.

(c) We use the Brent’s Theorem (see the lecture). Recall that if p is the number of processors, then

p = O(T1
T∞

). Therefore by putting the above values of T1 and T∞, we get p = O(nd

logn).

Exercise 2: Merging Two Sorted Arrays (6 points)

You are given two sorted arrays A = [a1, . . . , an] and B = [b1, . . . , bn], each of size n. The goal is to
merge them into one sorted array C = [c1, . . . , c2n] of length 2n.

(a) (1.5 points) We first consider the following subproblem. Given an index i ∈ {1, . . . , n}, we want
to find the final position j ∈ {1, . . . , 2n} of the value ai in the array C. Give a fast sequential
algorithm to compute j. What is the (sequential) running time of your algorithm?

(b) (1.5 points) Use the above algorithm to construct a parallel merging algorithm. The work T1 of
your algorithm should be at most O(n log n) and the span T∞ should be (asymptotically) as small
as possible. What is the span T∞ of your algorithm?

(c) (3 points) We now want to solve the merging problem in constant time (in parallel). Show that
by using O(n) processes, the subproblem considered in (a) can be solved in O(1) time. Use this
to get a constant-time parallel algorithm to merge the two sorted arrays. How many processors
do you need to achieve a constant-time algorithm?

Solution

Assume that all arrays are sorted in ascending order.

(a) Note that the first (i− 1) values in A are before ai in C, because the array A is sorted. Now we
have to find out how many values in B are before ai. That is to find the largest index k such that
bk ≤ ai. One easy way for this is to compare ai with the elements of B one by one starting from
b1 and find the index k. This will take O(n) time in general, since the size of the array B is n.
However, we can do it faster using the divide and conquer approach (this is exactly the binary
search). We recursively break the array B into two parts of equal size and check in which side
ai falls (and ignore the other side). Using divide and conquer approach we can find the index
k in O(log n) time. Once we find the k, then the final position of ai would be (i − 1) + k + 1
(assuming the array indices starting from 1).

2

(b) In the above algorithm, we see that one processor can find the final position of a value ai in
O(log n) time. Now we consider n processors corresponding to each value ai in A and compute
their positions in the output array C in parallel. All the processors can find the final position of
every values of A in O(log n) time. Then in the same way, we compute the position of all the val-
ues of B in C using n processors and O(log n) time. Hence, we can merge the two sorted arrays
into one sorted array in O(log n) time, using n processors. The total work is T1 = O(n log n)
and the span is T∞ = O(log n).

(c) Consider a particular value ai of A and we want to find the final position of ai in C. Let us take
n processors pk : k = 1, 2, . . . , n. Each processor pk compares the value ai with two consecu-
tive values bk−1 and bk in B. All the processors do it in parallel. (Note that the array indices
starting from 1, so we assume b0 = −∞ for consistency). Since the values bk are in ascending
order (sorted), there will be only one processor pt which see that bt−1 ≤ ai and bt > ai. That
is there are exactly t− 1 values in the array B which are smaller than ai. Hence, the processor
pt can decide the final position of ai which would be (i− 1) + (t− 1) + 1 (since there are i− 1
values smaller than ai in A). The processor pt can write the value ai safely in the final array
C. Note that the processor pn may observe that bn ≤ ai, then the final position of ai would
be (i − 1) + n + 1. Since all the processors computing this in parallel, it takes constant time.
Also we used n processors for this. We can extend this algorithm for all the values in A using
n2 processors in O(1) time: for each ai in A, run the algorithm in parallel. For this, we need a
total n2 processors and they can write all the values ai in the correct place in C. Notice that
there would not be any conflicts when writing in C, since a processor pt only writes the value in
one cell of the array C. Thus we can put all the values of A in the output array C in constant time.

Now we want to put all the values of B in C. Again we can use the same approach as above i.e.,
we find the right index of a particular value bj in B by comparing with values in A. We have
to be a bit careful in this case. During the comparison of a value bj with two consecutive values
ak−1 and ak, each processor pk checks if ak−1 < bj and ak ≥ bj , i.e., processors find index the
t, for which at−1 < bj and at ≥ bj holds. This “strict” less inequality is necessary to avoid any
concurrent writing or conflicts in C. The processor pt which found the index t, can decide the
final position of ai as (j − 1) + (t− 1) + 1.

Therefore, we can merge the two sorted array of size n into one sorted array in O(1) time using
n2 processors.

3

