Chapter 2
Greedy Algorithms

Algorithm Theory
WS 2016/17

Fabian Kuhn

UNI

FREIBURG

UNI

Greedy Algorithms

FREIBURG

* No clear definition, but essentially:

In each step make the choice that
looks best at the moment!

wo loa ‘L&Vﬁdc.““‘&

 Depending on problem, greedy algorithms can give
— Optimal solutions
— Close to optimal solutions
— No (reasonable) solutions at all

* Ifit works, very interesting approach!

— And we might even learn something about the structure of the problem

Goal: Improve understanding where it works (mostly by examples)

Algorithm Theory, WS 2016/17 Fabian Kuhn 2

FREIBURG

Interval Scheduling

UNI

* Given: Set of intervals, e.g.
[0,10],[1,3],[1,4],13,5],[4,71,[5,8],[5,121,[7,9],[9,12],[8,10],[11,14],[12,14]

[0,10] [11,14]
[1,3] [4,7] [7,9] [9,12]
[1,4] [5,8] [8,10] [12,14]
[3,5] [5,12]

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

* Goal: Select largest possible non-overlapping set of intervals
— Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping

 Example: Intervals are room requests; satisfy as many as possible

Algorithm Theory, WS 2016/17 Fabian Kuhn 3

Greedy Algorith

ms

UNI

FREIBURG

* Several possibilities...

Choose first available interval:

—> [0,10] [11,14]
M3 471 (7,9} 19,12] .
[14] 58] | [810] [12,14]

[3/5] // [5,12]

o 1 2 3 4 5 6 7

Choose shortest available interval:

[1,7]

8 9 10 11 12 13 14

[8,14]

N

o 1 2 3 4 5 6 7

Algorithm Theory, WS 2016/17

8 9 1

Fabian Kuhn

0 11 12 13 14

Greedy Algorithms

UNI
f

FREIBURG

Choose available request with earliest finishing time:

P
// 0,10] [11,14]
[l’i], /f4,7] [7,9] [9,12]
/[/l/,il] [5,8] [8,10] [12,14]
3,5] [5,12]

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

R := set of all requests; S := empty set;
while R is not empty do

choose r € R with smallest finishing time

addrtoS

delete all requests from R that are not compatible with r
end // S is the solution

Algorithm Theory, WS 2016/17 Fabian Kuhn

UNI

Earliest Finishing Time is Optimal

FREIBURG

* Let O be the set of intervals of an optimal solution

e Can we showthat$§ = 07?

— No...
[0,10] [11,14]
[1,3] 471 [7,9]1 @ [9,12]
[1,4] [5,8] [8,10] [12,14]
[3,5] [5,12]

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Greey Solution Alternative Optimal Sol.

* Show that |S| = |0|.

-

Algorithm Theory, WS 2016/17 Fabian Kuhn 6

Greedy Stays Ahead b;’/o(s by

N

&
UNI
FREIBURG

Greedy Solytion: bie by = o 2 by

4er) la, by], [@_2_19_2 - laisp by, where b; < a;.4
Optimal Solution:

lai, bi], a3, b3],. [a|0|,b|0|] where b; < a;, 4
Assume that b; = oo fori > |S| and b; = oo fori > |O|

Claim: Foralli > 1, b; < b;

[0,10] [11,14]
[1,3] [4,7] / [7,9]/+ [y/’
[1,4] // [5,8] ¢[8,10] [12,14]
[3,5] ¢ [5,12]

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Algorithm Theory, WS 2016/17 Fabian Kuhn 7

Greedy Stays Ahead

UNI
FREIBURG

Claim: Foralli > 1, b; < b/

Proof (by induction on i):

Fase: (= | b < b, s
%& = 4 \ N : %D;-\ S bi-.

A bf—;; ‘9:
S =]
L
O', l_ (-1 l[¢ ' . @
qit b \Q,Zlé:i 2_?7 !9|15 bi

al'é. wule

J

Corollary: Earliest finishing time algorithm is optimal.

Algorithm Theory, WS 2016/17 Fabian Kuhn 8

Weighted Interval Scheduling

UNI
f

FREIBURG

Weighted version of the problem:
* Each interval has a weight
* Goal: Non-overlapping set with maximum total weight

Earliest finishing time greedy algorithm fails:
* Algorithm needs to look at weights

* Else, the selected sets could be the ones with smallest weight...

No simple greedy algorithm:
 We will see an algorithm using another design technique later.

Algorithm Theory, WS 2016/17 Fabian Kuhn 9

Interval Partitioning

* Schedule all intervals: Partition intervals into as few as
possible non-overlapping sets of intervals

— Assign intervals to different resources, where each resource needs to
get a non-overlapping set

 Example:
— Intervals are requests to use some room during this time
— Assign all requests to some room such that there are no conflicts

— Use as few rooms as possible

* Assignment to 3 resources:

— | [1,3] [4,7] [9,12]
— [1,4] [5,8] [9,11] [12,14]
- [2,4] [5,12]

Algorithm Theory, WS 2016/17 Fabian Kuhn

UNI
f

FREIBURG

Depth

Depth of a set of intervals:
 Maximum number passing over a single point in time

* Depth of initial example is 4 (e.g., [0,10],[4,7]1,5,8],[5,12]):

[0,10] | [11,14]
[1,3] 4710 | 7,91 | [9,12]
[1,4] 8l | [8,10] [12,14]
[3,5] : [5,12]

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Lemma: Number of resources needed = depth

Algorithm Theory, WS 2016/17 Fabian Kuhn

UNI
FREIBURG

Greedy Algorithm

UNI

Can we achieve a partition into “depth” non-overlapping sets?

* Would mean that the only obstacles to partitioning are local...

Algorithm: ol

» Assigns labels 1, ... to the sets; same label =2 non-overlapping

1. sortintervals by starting time: I, I, ..., I,

2. fori=1tondo

assign smallest possible label to I;
(possible label: different from conflicting intervals I;, j < i)

4. end

Algorithm Theory, WS 2016/17 Fabian Kuhn 12

FREIBURG

Interval Partitioning Algorithm

UNI
FREIBURG

Example: | 2 g ¢
e Labels:
[0,10] [11,14]
[1,3] | 47 | [7.9] [9,12]
[1,4] - [5,8] [8,10] [12,14]
’ [3,5] [5,12]

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14
* Number of labels = depth =4

Algorithm Theory, WS 2016/17 Fabian Kuhn 13

Interval Partitioning: Analysis

UNI
FREIBURG

Theorem:

a) Let d be the depth of the given set of intervals. The
algorithm assigns a label from 1, ..., d to each interval.

b) Sets with the same label are non-overlapping

Proof:

* b) holds by construction

* Fora):
— Allintervals [;, j <'i ovelrlapping with [;, overlap at the beginning of [;

¢ |
- ;(%5 d-1

PR,

— At most d — 1 such intervals = some label in {1, ..., d} is available.

—— T

—_—

Algorithm Theory, WS 2016/17 Fabian Kuhn 14

Traveling Salesperson Problem (TSP)

Input:

* Set I/ of n nodes (points, cities, locations, sites)

* Distance functiond:V XV — R, i.e,, d(u, v): dist. from u to v
e Distances usually symmetric, asymm.zlistances - asymm. TSP

Vi Y2 Va
— - —_— — ——_——

Solution: L /

* Qrdering/permutation vy, v,, ..., v, of nodes

e Length of TSP path: Y1 d(v;, Vj41)
* Length of TSP tour: d(vy, v1) + X d(vi, Vig1)

Goal:
 Minimize length of TSP path or TSP tour

Algorithm Theory, WS 2016/17 Fabian Kuhn 15

UNI
f

FREIBURG

UNI
f

FREIBURG

Optimal Tour:

Length: 86

Greedy Algorithm?

Length: 121

Algorithm Theory, WS 2016/17 Fabian Kuhn 16

Nearest Neighbor (Greedy)

UNI

FREIBURG

* Nearest neighbor can be arbitrarily bad, even for TSP paths

Algorithm Theory, WS 2016/17 Fabian Kuhn

17

TSP Variants

UNI
FREIBURG

* Asymmetric TSP W
0
— arbitrary non-negative distance/cost function m y
— most general, nearest neighbor arbitrarily bad ¢\§‘
— NP-hard to get within any bound of optimum Y "
&\w
u® /
* Symmetric TSP
— arbitrary non-negative distance/cost function —
— nearest neighbor arbitrarily bad , S
/

W

=Y
— NP-hard to get within any bound of optimum T
/ dw*?
. ‘ Metric TSP ,

— distance function defines metric space: symmetric, non-negative,

triangle inequality: d(u, v) < d(u,w) + d(w, v)

— possible to get close to optimum (we will later see factor 3/,)

. . ——
— what about the nearest neighbor algorithm?

Algorithm Theory, WS 2016/17 Fabian Kuhn 18

Metric TSP, Nearest Neighbor

UNI

FREIBURG

Optimal TSP tour:

Nearest-Neighbor TSP tour:

Algorithm Theory, WS 2016/17 Fabian Kuhn

19

Metric TSP, Nearest Neighbor

FREIBURG

Optimal TSP tour:

Nearest-Neighbor TSP tour:
cost =24

wrka& ed eﬁ%f.
Grtow é’v '\‘“

Qe oAgs 2 M f&\af)gs

"ﬁs vur

#\mr\m& red QQSQS!
at (ka‘,*) (’\’JL

Algorithm Theory, WS 2016/17 Fabian Kuhn 20

Metric TSP, Nearest Neighbor

UNI

FREIBURG

Triangle Inequality:

optimal tour on remaining nodes @

- \

overall optimal tour 1.7

\v

2.1

> watked ed "
G ‘ ;

S opl TSP dour ou al(wode
¢ 3.4

Algorithm Theory, WS 2016/17 Fabian Kuhn

21

Metric TSP, Nearest Neighbor

UNI

FREIBURG

Analysis works in phases:

* |n each phase, assigh each optimal edge to some greedy edge
— Cost of greedy edge < cost of optimal edge

* Each greedy edge gets assigned < 2 optimal edges
— At least half of the greedy edges get assigned

* At end of phase:
Remove points for which greedy edge is assigned
Consider optimal solution for remaining points

* Triangle inequality: remaining opt. solution < overall opt. sol.

* Cost of greedy edges assigned in each phase < opt. cost
* Number of phases < log, n

— +1 for last greedy edge in tour

Algorithm Theory, WS 2016/17 Fabian Kuhn 22

Metric TSP, Nearest Neighbor

UNI

FREIBURG

e Assume:

NN: cost of greedy tour,

e We have shown:

QPT: cost of optimal tour

(45‘ 4&5} féwa)u v\&
NN ¢
- <
oPT = 1+ log,n

* Example of an approximation algorithm,

« We will later see a 3/,-approximation algorithm for metric TSP

Algorithm Theory, WS 2016/17

Fabian Kuhn 23

Back to Scheduling

UNI
FREIBURG

* Given: n requests / jobs with deadlines:

length t; = 10

|deadline dy =11

t2=7 Id2=1‘—Q
t; =3 |d; =13
t4,=5 Id4=7
—
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

e Goal: schedule all jobs with minimum lateness L

— Schedule: s(i), f(i): start and finishing times of request i
Note: f(i) = s(i) + ¢;

e Lateness L := max {O, miax{f(i) — di}}

— largest amount of time by which some job finishes late

 Many other natural objective functions possible...

Algorithm Theory, WS 2016/17

Fabian Kuhn 24

Greedy Algorithm?

UNI
f

FREIBURG

Schedule jobs in order of increasing length?
* Ignores deadlines: seems too simplistic...
* E.g.:

t; = 10 | deadline d; = 10
T

Schedule:| t, = 2 t; =10

Schedule by increasing slack time?
e Should be concerned about slack time: d; — t;

t; = 10 | deadline d; = 10

=

t2=2 Id2=3

—_— -\(? -

Schedule: t; = 10 Lty = 2

Algorithm Theory, WS 2016/17 Fabian Kuhn 25

UNI

Greedy Algorithm

Schedule by earliest deadline?
* Schedule in increasing order of d;
* Ignores lengths of jobs: too simplistic?

e Earliest deadline is optimall!
A e 7

—————— \ —

Algorithm:
* Assume jobs are reordered suchthatd, < d, < - < d,
 Start/finishing times: N N

— First job starts at time s(1) =0 C/(adb A L

— Duration of job i is ¢;: f (i) = s(i) + ¢;

— No gaps between jobs: s(i + 1) = f(i)

(idle time: gaps in a schedule = alg. gives schedule with no idle time)

Algorithm Theory, WS 2016/17 Fabian Kuhn 26

FREIBURG

Example

FREIBURG

UNI

Jobs ordered by deadline:

t; =5 |d, =7
t, =3 |d, =10
ty =7 ld, = 11
t; =3 |d3=
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Schedule:

10 11 12 13 14

Lateness: job 1: 0, job 2: 0, job 3:_4}!Sjob 4:5 \)

Algorithm Theory, WS 2016/17

o 1 2 3 4 5 6 7 8 9

Fabian Kuhn 27

Basic Facts

UNI
FREIBURG

1. There is an optimal schedule with no idle time
— Canjust schedule jobs earlier...

2. Inversion: Job i scheduled before job j if d; > d;
Schedules with no mversmry have the same maximum lateness

uvo) Qolm-?
(1=” d:’lf ii::‘ S A= 20 (
| /

Algorithm Theory, WS 2016/17 Fabian Kuhn 28

Earliest Deadline is Optimal

UNI

Theorem:
There is an optimal schedule O with no inversions and no idle time.

Proof:
. Consider(optima) schedule O’ with no idle time

* If O’ has inversions, 3 pair (i, j), s.t. i is scheduled immediately
before j and d; < d;

JZ.. > c()_,

—_—

AN,

A R [5 %

d; > d;

* Claim: Swapping i and j gives schedule with
1. Less inversions
2. | Maximum lateness no larger than in 0i ;l

Algorithm Theory, WS 2016/17 Fabian Kuhn 29

FREIBURG

UNI

Earliest Deadline is Optimal

FREIBURG

Claim: Swapping i and j: maximum lateness no larger than in O’

d d;
’ | | d,>d;

— ,. >

Algorithm Theory, WS 2016/17 Fabian Kuhn 30

