
Chapter 2

Greedy Algorithms

Algorithm Theory
WS 2016/17

Fabian Kuhn

Algorithm Theory, WS 2016/17 Fabian Kuhn 2

Greedy Algorithms

• No clear definition, but essentially:

• Depending on problem, greedy algorithms can give
– Optimal solutions

– Close to optimal solutions

– No (reasonable) solutions at all

• If it works, very interesting approach!
– And we might even learn something about the structure of the problem

Goal: Improve understanding where it works (mostly by examples)

In each step make the choice that
looks best at the moment!

Algorithm Theory, WS 2016/17 Fabian Kuhn 3

Interval Scheduling

• Given: Set of intervals, e.g.
[0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]

• Goal: Select largest possible non-overlapping set of intervals
– Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping

• Example: Intervals are room requests; satisfy as many as possible

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10]

[1,3]

[1,4]

[3,5]

[4,7]

[5,8]

[11,14]

[5,12]

[8,10] [12,14]

[7,9] [9,12]

Algorithm Theory, WS 2016/17 Fabian Kuhn 4

Greedy Algorithms

• Several possibilities…

Choose first available interval:

Choose shortest available interval:

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10]

[1,3]

[1,4]

[3,5]

[4,7]

[5,8]

[11,14]

[5,12]

[8,10] [12,14]

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[6,9]

[1,7] [8,14]

[7,9] [9,12]

Algorithm Theory, WS 2016/17 Fabian Kuhn 5

Greedy Algorithms

Choose available request with earliest finishing time:

𝑅 ≔ set of all requests; 𝑆 ≔ empty set;
while 𝑅 is not empty do

choose 𝑟 ∈ 𝑅 with smallest finishing time
add 𝑟 to 𝑆
delete all requests from 𝑅 that are not compatible with 𝑟

end // 𝑆 is the solution

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10]

[1,3]

[1,4]

[3,5]

[4,7]

[5,8]

[11,14]

[5,12]

[7,9]

[8,10] [12,14]

[1,3]

[3,5]

[5,8]

[11,14]

[8,10]

[9,12]

Algorithm Theory, WS 2016/17 Fabian Kuhn 6

Earliest Finishing Time is Optimal

• Let 𝑂 be the set of intervals of an optimal solution

• Can we show that 𝑆 = 𝑂?
– No…

• Show that 𝑆 = 𝑂 .

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10]

[1,3]

[1,4]

[3,5]

[4,7]

[5,8]

[11,14]

[5,12]

[8,10] [12,14]

[7,9] [9,12]

Greey Solution Alternative Optimal Sol.

Algorithm Theory, WS 2016/17 Fabian Kuhn 7

Greedy Stays Ahead

• Greedy Solution:

𝑎1, 𝑏1 , 𝑎2, 𝑏2 , … , 𝑎 𝑆 , 𝑏 𝑆 , where 𝑏𝑖 ≤ 𝑎𝑖+1

• Optimal Solution:

𝑎1
∗ , 𝑏1

∗ , 𝑎2
∗ , 𝑏2

∗ , … , 𝑎 𝑂
∗ , 𝑏 𝑂

∗ , where 𝑏𝑖
∗ ≤ 𝑎𝑖+1

∗

• Assume that 𝑏𝑖 = ∞ for 𝑖 > |𝑆| and 𝑏𝑖
∗ = ∞ for 𝑖 > |𝑂|

Claim: For all 𝑖 ≥ 1, 𝑏𝑖 ≤ 𝑏𝑖
∗

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10]

[1,3]

[1,4]

[3,5]

[4,7]

[5,8]

[11,14]

[5,12]

[8,10] [12,14]

[7,9] [9,12]

Algorithm Theory, WS 2016/17 Fabian Kuhn 8

Greedy Stays Ahead

Claim: For all 𝑖 ≥ 1, 𝑏𝑖 ≤ 𝑏𝑖
∗

Proof (by induction on 𝑖):

Corollary: Earliest finishing time algorithm is optimal.

Algorithm Theory, WS 2016/17 Fabian Kuhn 9

Weighted Interval Scheduling

Weighted version of the problem:

• Each interval has a weight

• Goal: Non-overlapping set with maximum total weight

Earliest finishing time greedy algorithm fails:

• Algorithm needs to look at weights

• Else, the selected sets could be the ones with smallest weight…

No simple greedy algorithm:

• We will see an algorithm using another design technique later.

Algorithm Theory, WS 2016/17 Fabian Kuhn 10

Interval Partitioning

• Schedule all intervals: Partition intervals into as few as
possible non-overlapping sets of intervals
– Assign intervals to different resources, where each resource needs to

get a non-overlapping set

• Example:
– Intervals are requests to use some room during this time

– Assign all requests to some room such that there are no conflicts

– Use as few rooms as possible

• Assignment to 3 resources:

[1,3]

[1,4]

[2,4]

[4,7]

[5,8]

[5,12]

[9,11] [12,14]

[9,12]

Algorithm Theory, WS 2016/17 Fabian Kuhn 11

Depth

Depth of a set of intervals:

• Maximum number passing over a single point in time

• Depth of initial example is 4 (e.g., [0,10],[4,7],[5,8],[5,12]):

Lemma: Number of resources needed ≥ depth

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10]

[1,3]

[1,4]

[3,5]

[4,7]

[5,8]

[11,14]

[5,12]

[8,10] [12,14]

[7,9] [9,12]

Algorithm Theory, WS 2016/17 Fabian Kuhn 12

Greedy Algorithm

Can we achieve a partition into “depth” non-overlapping sets?

• Would mean that the only obstacles to partitioning are local…

Algorithm:

• Assigns labels 1,… to the sets; same label  non-overlapping

1. sort intervals by starting time: 𝐼1, 𝐼2, … , 𝐼𝑛
2. for 𝑖 = 1 to 𝑛 do

3. assign smallest possible label to 𝐼𝑖
(possible label: different from conflicting intervals 𝐼𝑗, 𝑗 < 𝑖)

4. end

Algorithm Theory, WS 2016/17 Fabian Kuhn 13

Interval Partitioning Algorithm

Example:

• Labels:

• Number of labels = depth = 4

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10]

[1,3]

[1,4]

[3,5]

[4,7]

[5,8]

[11,14]

[5,12]

[8,10] [12,14]

[7,9] [9,12]

[0,10][0,10]

[1,3]

[1,4]

[3,5]

[4,7]

[5,8]

[5,12]

[7,9]

[8,10]

[9,12]

[11,14]

[12,14]

Algorithm Theory, WS 2016/17 Fabian Kuhn 14

Interval Partitioning: Analysis

Theorem:

a) Let 𝑑 be the depth of the given set of intervals. The
algorithm assigns a label from 1,… , 𝑑 to each interval.

b) Sets with the same label are non-overlapping

Proof:

• b) holds by construction

• For a):

– All intervals 𝐼𝑗, 𝑗 < 𝑖 overlapping with 𝐼𝑖, overlap at the beginning of 𝐼𝑖

– At most 𝑑 − 1 such intervals  some label in {1, … , 𝑑} is available.

Algorithm Theory, WS 2016/17 Fabian Kuhn 15

Traveling Salesperson Problem (TSP)

Input:

• Set 𝑉 of 𝑛 nodes (points, cities, locations, sites)

• Distance function 𝑑: 𝑉 × 𝑉 → ℝ, i.e., 𝑑(𝑢, 𝑣): dist. from 𝑢 to 𝑣

• Distances usually symmetric, asymm. distances  asymm. TSP

Solution:

• Ordering/permutation 𝑣1, 𝑣2, … , 𝑣𝑛 of nodes

• Length of TSP path: σ𝑖=1
𝑛−1𝑑 𝑣𝑖 , 𝑣𝑖+1

• Length of TSP tour: 𝑑 𝑣𝑛, 𝑣1 + σ𝑖=1
𝑛−1𝑑 𝑣𝑖 , 𝑣𝑖+1

Goal:

• Minimize length of TSP path or TSP tour

Algorithm Theory, WS 2016/17 Fabian Kuhn 16

Example

3

13
4

9

1

10

32

33

3

3

8
2

20

2118

17

1

199

1

6 2
2

Optimal Tour:

Length: 86

Greedy Algorithm?

Length: 121

Algorithm Theory, WS 2016/17 Fabian Kuhn 17

Nearest Neighbor (Greedy)

• Nearest neighbor can be arbitrarily bad, even for TSP paths

1

1000

2 1

2

2

Algorithm Theory, WS 2016/17 Fabian Kuhn 18

TSP Variants

• Asymmetric TSP
– arbitrary non-negative distance/cost function

– most general, nearest neighbor arbitrarily bad

– NP-hard to get within any bound of optimum

• Symmetric TSP
– arbitrary non-negative distance/cost function

– nearest neighbor arbitrarily bad

– NP-hard to get within any bound of optimum

• Metric TSP
– distance function defines metric space: symmetric, non-negative,

triangle inequality: 𝑑 𝑢, 𝑣 ≤ 𝑑 𝑢,𝑤 + 𝑑(𝑤, 𝑣)

– possible to get close to optimum (we will later see factor Τ3 2)

– what about the nearest neighbor algorithm?

Algorithm Theory, WS 2016/17 Fabian Kuhn 19

Metric TSP, Nearest Neighbor

Optimal TSP tour:

Nearest-Neighbor TSP tour:

1

2

3

4

5

6

7

9

8

10

11

12

1.3 1.12.1

0.8

1.9

4.0 2.1

1.3
1.23.4

3.1

1.7

Algorithm Theory, WS 2016/17 Fabian Kuhn 20

Metric TSP, Nearest Neighbor

Optimal TSP tour:

Nearest-Neighbor TSP tour:
cost = 24

1

2

3

4

5

6

7

9

8
10

11

12

1.3

1.1

2.1

0.8

1.9

4.0

2.1

1.3

1.23.4

3.1

1.7

Algorithm Theory, WS 2016/17 Fabian Kuhn 21

Metric TSP, Nearest Neighbor

Triangle Inequality:

optimal tour on remaining nodes
≤

overall optimal tour 7

9

10

11

12

2.1

1.3

3.4

3.1

1.7

Algorithm Theory, WS 2016/17 Fabian Kuhn 22

Metric TSP, Nearest Neighbor

Analysis works in phases:

• In each phase, assign each optimal edge to some greedy edge
– Cost of greedy edge ≤ cost of optimal edge

• Each greedy edge gets assigned ≤ 2 optimal edges
– At least half of the greedy edges get assigned

• At end of phase:
Remove points for which greedy edge is assigned
Consider optimal solution for remaining points

• Triangle inequality: remaining opt. solution ≤ overall opt. sol.

• Cost of greedy edges assigned in each phase ≤ opt. cost

• Number of phases ≤ 𝐥𝐨𝐠𝟐 𝒏
– +1 for last greedy edge in tour

Algorithm Theory, WS 2016/17 Fabian Kuhn 23

Metric TSP, Nearest Neighbor

• Assume:
NN: cost of greedy tour, OPT: cost of optimal tour

• We have shown:
NN

OPT
≤ 1 + log2 𝑛

• Example of an approximation algorithm

• We will later see a Τ3 2-approximation algorithm for metric TSP

Algorithm Theory, WS 2016/17 Fabian Kuhn 24

Back to Scheduling

• Given: 𝑛 requests / jobs with deadlines:

• Goal: schedule all jobs with minimum lateness 𝐿
– Schedule: 𝑠(𝑖), 𝑓(𝑖): start and finishing times of request 𝑖

Note: 𝑓 𝑖 = 𝑠 𝑖 + 𝑡𝑖

• Lateness 𝐿 ≔ max 0,max
𝑖

𝑓 𝑖 − 𝑑𝑖
– largest amount of time by which some job finishes late

• Many other natural objective functions possible…

0 1 2 3 4 5 76 8 9 10 11 12 13 14

length 𝑡1 = 10

𝑡3 = 3

𝑡4 = 5

𝑡2 = 7

deadline 𝑑1 = 11

𝑑2 = 10

𝑑3 = 13

𝑑4 = 7

Algorithm Theory, WS 2016/17 Fabian Kuhn 25

Greedy Algorithm?

Schedule jobs in order of increasing length?

• Ignores deadlines: seems too simplistic…

• E.g.:

Schedule by increasing slack time?

• Should be concerned about slack time: 𝑑𝑖 − 𝑡𝑖

𝑡1 = 10 deadline 𝑑1 = 10

⋯ 𝑑2 = 100𝑡2 = 2

𝑡2 = 2 𝑡1 = 10Schedule:

𝑡1 = 10 deadline 𝑑1 = 10

𝑑2 = 3𝑡2 = 2

𝑡2 = 2𝑡1 = 10Schedule:

Algorithm Theory, WS 2016/17 Fabian Kuhn 26

Greedy Algorithm

Schedule by earliest deadline?

• Schedule in increasing order of 𝑑𝑖
• Ignores lengths of jobs: too simplistic?

• Earliest deadline is optimal!

Algorithm:

• Assume jobs are reordered such that 𝑑1 ≤ 𝑑2 ≤ ⋯ ≤ 𝑑𝑛
• Start/finishing times:

– First job starts at time 𝑠 1 = 0

– Duration of job 𝑖 is 𝑡𝑖: 𝑓 𝑖 = 𝑠 𝑖 + 𝑡𝑖
– No gaps between jobs: 𝑠 𝑖 + 1 = 𝑓 𝑖

(idle time: gaps in a schedule  alg. gives schedule with no idle time)

Algorithm Theory, WS 2016/17 Fabian Kuhn 27

Example

Jobs ordered by deadline:

Schedule:

Lateness: job 1: 0, job 2: 0, job 3: 4, job 4: 5

0 1 2 3 4 5 76 8 9 10 11 12 13 14

𝑡3 = 7

𝑡3 = 3

𝑡1 = 5

𝑡2 = 3

𝑑1 = 11

𝑑2 = 10

𝑑3 = 13

𝑑4 = 7

0 1 2 3 4 5 76 8 9 10 11 12 13 14

𝑡1 = 5 𝑡2 = 3 𝑡3 = 7 𝑡3 = 3

Algorithm Theory, WS 2016/17 Fabian Kuhn 28

Basic Facts

1. There is an optimal schedule with no idle time
– Can just schedule jobs earlier…

2. Inversion: Job 𝑖 scheduled before job 𝑗 if 𝑑𝑖 > 𝑑𝑗
Schedules with no inversions have the same maximum lateness

Algorithm Theory, WS 2016/17 Fabian Kuhn 29

Earliest Deadline is Optimal

Theorem:
There is an optimal schedule 𝒪 with no inversions and no idle time.

Proof:

• Consider optimal schedule 𝒪′ with no idle time

• If 𝒪′ has inversions, ∃ pair (𝑖, 𝑗), s.t. 𝑖 is scheduled immediately
before 𝑗 and 𝑑𝑗 < 𝑑𝑖

• Claim: Swapping 𝑖 and 𝑗 gives schedule with
1. Less inversions

2. Maximum lateness no larger than in 𝒪′

Algorithm Theory, WS 2016/17 Fabian Kuhn 30

Earliest Deadline is Optimal

Claim: Swapping 𝑖 and 𝑗: maximum lateness no larger than in 𝒪′

