

Chapter 2 Greedy Algorithms

Algorithm Theory WS 2016/17

Fabian Kuhn

Greedy Algorithms

No clear definition, but essentially:

In each step make the choice that looks best at the moment!

no backtracking

- Depending on problem, greedy algorithms can give
 - Optimal solutions
 - Close to optimal solutions
 - No (reasonable) solutions at all
- If it works, very interesting approach!
 - And we might even learn something about the structure of the problem

Goal: Improve understanding where it works (mostly by examples)

Scheduling with Deadlines

Given: n requests / jobs with deadlines:

- Goal: schedule all jobs with minimum lateness L
 - Schedule: s(i), f(i): start and finishing times of request iNote: $f(i) = s(i) + t_i$
- Lateness $\underline{L} := \max \left\{ 0, \max_{i} \{ f(i) d_i \} \right\}$
 - largest amount of time by which some job finishes late
- Many other natural objective functions possible...

Greedy Algorithm

Schedule by earliest deadline?

- Schedule in increasing order of d_i
- Ignores lengths of jobs: too simplistic?
- Earliest deadline is optimal!

Algorithm:

- Assume jobs are reordered such that $d_1 \le d_2 \le \cdots \le d_n$
- Start/finishing times:
 - First job starts at time s(1) = 0
 - Duration of job i is t_i : $f(i) = s(i) + t_i$
 - No gaps between jobs: s(i + 1) = f(i)

(idle time: gaps in a schedule \rightarrow alg. gives schedule with no idle time)

Basic Facts

- 1. There is an optimal schedule with no idle time
 - Can just schedule jobs earlier...
- 2. Inversion: Job i scheduled before job j if $\underline{d_i} > \underline{d_j}$ Schedules with no inversions have the same maximum lateness

Earliest Deadline is Optimal

Theorem:

There is an optimal schedule \mathcal{O} with no inversions and no idle time.

Proof:

- Consider optimal schedule O' with no idle time
- If O' has inversions, \exists pair (i, j), s.t. i is scheduled immediately before j and $d_i < d_i$
- Swapping i and j gives schedule with
 1. Less inversions
 2. Maximum lateness no larger than in O'

Exchange Argument

- General approach that often works to analyze greedy algorithms
- Start with any solution
- Define basic exchange step that allows to transform solution into a new solution that is not worse
- Show that exchange step move solution closer to the solution produced by the greedy algorithm
- Number of exchange steps to reach greedy solution should be finite...

Another Exchange Argument Example

- Minimum spanning tree (MST) problem
 - Classic graph-theoretic optimization problem
- Given: weighted graph
- Goal: spanning tree with min. total weight
- Several greedy algorithms work
- Kruskal's algorithm:
 - Start with empty edge set
 - As long as we do not have a spanning tree:
 add minimum weight edge that doesn't close a cycle

Kruskal Algorithm: Example

Kruskal is Optimal

- Basic exchange step: swap to edges to get from tree T to tree T'
 - Swap out edge not in Kruskal tree, swap in edge in Kruskal tree
 - Swapping does not increase total weight
- For simplicity, assume, weights are unique:

Matroids

• Same, but more abstract...

act...
$$\phi \in \Gamma$$

331

Matroid: pair(E, I)

- E: set, called the ground set set of oleven's
- *I*: finite family of finite subsets of E (i.e., $I \subseteq 2^E$), called **independent sets**

(E, I) needs to satisfy 3 properties:

- 1. Empty set is independent, i.e., $\emptyset \in I$ (implies that $I \neq \emptyset$)
- **2.** Hereditary property: For all $A \subseteq E$ and all $A' \subseteq A$,

if
$$A \in I$$
, then also $A' \in I$

3. Augmentation / Independent set exchange property: If $A, B \in I$ and |A| > |B|, there exists $x \in A \setminus B$ such that

Example

- Fano matroid:
 - Smallest finite projective plane of order 2...

Matroids and Greedy Algorithms (E, T)

Weighted matroid: each $e \in E$ has a weight w(e) > 0

Goal: find maximum weight independent set

Greedy algorithm:

- 1. Start with $S = \emptyset$
- 2. Add max. weight $e \in E \setminus S$ to S such that $S \cup \{e\} \in I$

Claim: greedy algorithm computes optimal solution

Greedy is Optimal

$$S = |S|$$

$$9 = |A|$$

S: greedy solution

$$\underline{\underline{\underline{A}}}$$
: any other solution

1<u>S1 > 1A1:</u>

for contradiction, assume 1A1>1S) augus prop!
$$\exists x \in A \setminus S$$
: $S \cup \{x\} \in T$
greedy would have added x

 $| w(S) \ge w(A) : |$

$$S = \{x_1, x_2, ..., x_5\}$$

$$\omega(S) < \omega(A)$$

$$\forall i \in \{1,...,a\}: \omega(x_i) \geq \omega(y_i)$$
 (4)

augun. property:
$$\exists y \in Ais: Suly \in I$$

Matroids: Examples

Forests of a graph G = (V, E):

- forest F: subgraph with no cycles (i.e., $F \subseteq E$)
- \mathcal{F} : set of all forests \rightarrow (E, \mathcal{F}) is a matroid
- Greedy algorithm gives maximum weight forest (equivalent to MST problem)

Bicircular matroid of a graph G = (V, E):

- \mathcal{B} : set of edges such that every connected subset has ≤ 1 cycle
- (E,\mathcal{B}) is a matroid \rightarrow greedy gives max. weight such subgraph

Linearly independent vectors:

- Vector space V, E: finite set of vectors, I: sets of lin. indep. vect.
- Fano matroid can be defined like that

Forest Matroid $G = (V, \epsilon)$

$$G = (V, E)$$

- DØEF /
- 2) FEF A F'EF -> F'EF /
- augm. proposty: forests F, F2 | II, | < | IZ|

$$k_1$$
: # of components $(u=(VI))$

Greedoid

- Matroids can be generalized even more
- Relax hereditary property:

```
Replace A'\subseteq A\subseteq I \implies A'\in I by \emptyset \neq A\subseteq I \implies \exists a\in A, \text{ s. t. } A\setminus \{a\}\in I (Argu)
```

- Exchange property holds as before
- Under certain conditions on the weights, greedy is optimal for computing the max. weight $A \in I$ of a greedoid.
 - Additional conditions automatically satisfied by hereditary property
- More general than matroids