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* No clear definition, but essentially:

In each step make the choice that
looks best at the moment!

— w back ‘L*“CIC—\W%

 Depending on problem, greedy algorithms can give
— Optimal solutions
— Close to optimal solutions
— No (reasonable) solutions at all

* Ifit works, very interesting approach!

— And we might even learn something about the structure of the problem

Goal: Improve understanding where it works (mostly by examples)
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Scheduling with Deadlines
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* Given: n requests / jobs with deadlines:

length ¢; = 10

J__deadline d; =11

t, =7 d, =10
t; =3 |d; =13
t4,=5 Id4=7
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

e Goal: schedule all jobs with minimum lateness L

— Schedule: s(i), f (i): start and finishing times of request i
Note: f(i) = s(i) + ¢;

* Lateness L = max {O, miax{f(i) — di}}

— largest amount of time by which some job finishes late

 Many other natural objective functions possible...
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Greedy Algorithm
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Schedule by earliest deadline?
* Schedule in increasing order of d;
* Ignores lengths of jobs: too simplistic?

e Earliest deadline is optimall!

Algorithm:
* Assume jobs are reordered such thatd; < d, < --- <d,
 Start/finishing times:

— First job starts at time s(1) =0

— Duration of job iist;: f(i) = s(i) + t;

— No gaps between jobs: s(i + 1) = f(i)

(idle time: gaps in a schedule = alg. gives schedule with no idle time)
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Basic Facts

UNI

FREIBURG

1. There is an optimal schedule with no idle time
— Canjust schedule jobs earlier...

2. Inversion: Job i scheduled before job j if d; > d;
Schedules with no inversions have the same maximum lateness
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Theorem:
There is an optimal schedule O with no inversions and no idle time.

Proof:
* Consider optimal schedule O’ with no idle time

* If O’ has inversions, 3 pair (i, j), s.t. i is scheduled immediately
before j and d; < d;

* | Swapping L and j gives schedule with
1. Less inversions
2.  Maximum lateness no larger than in O’
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Exchange Argument
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* General approach that often works to analyze greedy algorithms

e Start with any solution

* Define basic exchange step that allows to transform solution into
a new solution that is not worse

* Show that exchange step move solution closer to the solution
produced by the greedy algorithm

* Number of exchange steps to reach greedy solution should be
finite...
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Another Exchange Argument Example
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 Minimum spanning tree (MST) problem
— Classic graph-theoretic optimization problem

* Given: weighted graph
* Goal: spanning tree with min. total weight

* Several greedy algorithms work

* Kruskal’s algorithm:
— Start with empty edge set

— As long as we do not have a spanning tree:
add minimum weight edge that doesn’t close a cycle
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Kruskal Algorithm: Example
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Kruskal is Optimal

« Basic exchange step: swap to edges to get from tree T to tree T’
— Swap out edge not in Kruskal tree, swap in edge in Kruskal tree

— Swapping does not increase total weight

* For 5|mpI|C|ty, assume, weights are unlque

o S?awm& tree T Knuska( trer
AP e e T\

wl) < we):
T assuer otlewise:
Kiuckal cougﬁofns -} ‘oe(—‘we _€

Kmskal would lave adleX €

LT TN Ui w(T) < w(D)
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Matroids
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* Same, but more abstract... .V
u/Sd- 975&»1

Matroid: pair (E, I)

* E:set, called the ground set sef of clewsls
« I finite family of finite subsets of E (i.e., I < 2F),

called independent sets

(E,I) needs to satisfy 3 properties:

1. Empty setis independent, i.e., @ € I (implies that I + @)

2. Hereditary property: Forall A € E and all A" € A,

IfA,B € I and |A| > |B|, there exists x € A \ B such that

Algorithm Theory, WS 2016/17

ifA €I, thenalsoA' €1
3. Augmentation / Independent set exchange property:

Bg::BU{x}EI

Fabian Kuhn

G S

11



Example
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* Fano matroid:
— Smallest finite projective plane of order 2...
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Matroids and Greedy Algorithms & 27
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Weighted matroid: each e € E has a weight w(e) > 0

Goal: find maximum weight independent set

Greedy algorithm:

1. StartwithS =0

2. Add max. weighte € E\ StoSsuchthatSU{e} el

Claim: greedy algorithm computes optimal solution
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Matroids: Examples

e

Forests of a graph ¢ = (V,E):

e forest F: subgraph with no cycles (i.e., F € F)

* F:setofall forests 2 (E,X) is a matroid

* Greedy algorithm gives maximum weight forest

(equivalent to MST problem) d
<~

Bicircular matroid of a graph G = (V,E): 7
* B:setof edges such that every connected subset has < 1 cycle
* (E,B) is a matroid = greedy gives max. weight such subgraph

a nzo\

Linearly independent vectors:
* Vector space V, E: finite set of vectors, I: sets of lin. indep. vect.

 Fano matroid can be defined like that
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Greedoid

 Matroids can be generalized even more

e Relax hereditary property:

Replace A'c€Ac] = A €l

by O+AC] = 3da€A s.t. A\{a} el
( Ay

* Exchange property holds as before

* Under certain conditions on the weights, greedy is optimal for
computing the max. weight A € [ of a greedoid.

— Additional conditions automatically satisfied by hereditary property

 More general than matroids
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