
Chapter 3

Dynamic Programming

Algorithm Theory
WS 2016/17

Fabian Kuhn



Algorithm Theory, WS 2016/17 Fabian Kuhn 2

„Memoization“ for increasing the efficiency of a recursive solution:

• Only the first time a sub-problem is encountered, its solution is 
computed and then stored in a table. Each subsequent time that 
the subproblem is encountered, the value stored in the table is 
simply looked up and returned

(without repeated computation!).

• Computing the solution: For each sub-problem, store how the 
value is obtained (according to which recursive rule).

Dynamic Programming



Algorithm Theory, WS 2016/17 Fabian Kuhn 3

Dynamic Programming

Dynamic programming / memoization can be applied if

• Optimal solution contains optimal solutions to sub-problems
(recursive structure)

• Number of sub-problems that need to be considered is small



Algorithm Theory, WS 2016/17 Fabian Kuhn 4

Edit Distance

Given: Two strings 𝐴 = 𝑎1𝑎2…𝑎𝑚 and 𝐵 = 𝑏1𝑏2…𝑏𝑛

Goal: Determine the minimum number 𝐷(𝐴, 𝐵) of edit 
operations required to transform 𝐴 into 𝐵

Edit operations:

a) Replace a character from string 𝐴 by a character from 𝐵

b) Delete a character from string 𝐴

c) Insert a character from string 𝐵 into 𝐴

m a – t h e m - - a t i c i a n 

m u l t i p l i c a t i o - - n



Algorithm Theory, WS 2016/17 Fabian Kuhn 5

Computation of the Edit Distance

Three ways of ending an “alignment” between 𝐴𝑘 and 𝐵ℓ:

1. 𝑎𝑘 is replaced by 𝑏ℓ:

𝐷𝑘,ℓ = 𝐷𝑘−1,ℓ−1 + 𝑐 𝑎𝑘 , 𝑏ℓ

2. 𝑎𝑘 is deleted:

𝐷𝑘,ℓ = 𝐷𝑘−1,ℓ + 𝑐 𝑎𝑘 , 𝜀

3. 𝑏ℓ is inserted:

𝐷𝑘,ℓ = 𝐷𝑘,ℓ−1 + 𝑐 𝜀, 𝑏ℓ



Algorithm Theory, WS 2016/17 Fabian Kuhn 6

Computing the Edit Distance

• Recurrence relation (for 𝑘, ℓ ≥ 1)

𝐷𝑘,ℓ = min

𝐷𝑘−1,ℓ−1 + 𝑐 𝑎𝑘 , 𝑏ℓ
𝐷𝑘−1,ℓ + 𝑐 𝑎𝑘 , 𝜀

𝐷𝑘,ℓ−1 + 𝑐 𝜀, 𝑏ℓ

=min

𝐷𝑘−1,ℓ−1 + 1 / 0

𝐷𝑘−1,ℓ + 1

𝐷𝑘,ℓ−1 + 1

• Need to compute 𝐷𝑖,𝑗 for all 0 ≤ 𝑖 ≤ 𝑘, 0 ≤ 𝑗 ≤ ℓ:

unit cost model

𝑫𝒌−𝟏,ℓ−𝟏 𝑫𝒌−𝟏,ℓ

𝑫𝒌,ℓ−𝟏 𝑫𝒌,ℓ

+𝟏

+𝟏

+𝟏 / 𝟎



Algorithm Theory, WS 2016/17 Fabian Kuhn 7

Edit Distance: Summary

• Edit distance between two strings of length 𝑚 and 𝑛 can be 
computed in 𝑂 𝑚𝑛 time.

• Obtain the edit operations:
– for each cell, store which rule(s) apply to fill the cell

– track path backwards from cell (𝑚, 𝑛)

– can also be used to get all optimal “alignments”

• Unit cost model: 
– interesting special case

– each edit operation costs 1



Algorithm Theory, WS 2016/17 Fabian Kuhn 8

Approximate String Matching

Given: strings 𝑇 = 𝑡1𝑡2…𝑡𝑛 (text) and 𝑃 = 𝑝1𝑝2…𝑝𝑚 (pattern).

Goal: Find an interval [𝑟, 𝑠], 1 ≤ 𝑟 ≤ 𝑠 ≤ 𝑛 such that the sub-string 
𝑇𝑟,𝑠 ≔ 𝑡𝑟 …𝑡𝑠 is the one with highest similarity to the pattern 𝑃:

arg min
1≤𝑟≤𝑠≤𝑛

𝐷 𝑇𝑟,𝑠, 𝑃

𝑇

𝑃

𝑠𝑟

≈



Algorithm Theory, WS 2016/17 Fabian Kuhn 9

Approximate String Matching

Naive Solution:

for all 1 ≤ 𝑟 ≤ 𝑠 ≤ 𝑛 do

compute 𝐷(𝑇𝑟,𝑠, 𝑃)

choose the minimum



Algorithm Theory, WS 2016/17 Fabian Kuhn 10

Approximate String Matching

A related problem:

• For each position 𝑠 in the text and each position 𝑖 in the
pattern compute the minimum edit distance 𝐸(𝑖, 𝑠) between
𝑃𝑖 = 𝑝1…𝑝𝑖 and any substring 𝑇𝑟,𝑠 of 𝑇 that ends at position 𝑠.

𝑇
𝑠

𝐸(𝑖, 𝑠)

𝑃𝑖 = 𝑝1…𝑝𝑖

𝑟

𝑃



Algorithm Theory, WS 2016/17 Fabian Kuhn 11

Approximate String Matching

Three ways of ending optimal alignment between 𝑇𝑏 and 𝑃𝑖:

1. 𝑡𝑏 is replaced by 𝑝𝑖:

𝐸𝑏,𝑖 = 𝐸𝑏−1,𝑖−1 + 𝑐 𝑡𝑏 , 𝑝𝑖

2. 𝑡𝑏 is deleted:

𝐸𝑏,𝑖 = 𝐸𝑏−1,𝑖 + 𝑐 𝑡𝑏 , 𝜀

3. 𝑝𝑖 is inserted:

𝐸𝑏,𝑖 = 𝐸𝑏,𝑖−1 + 𝑐 𝜀, 𝑝𝑖



Algorithm Theory, WS 2016/17 Fabian Kuhn 12

Approximate String Matching

Recurrence relation (unit cost model):

𝑬𝒃,𝒊 = 𝐦𝐢𝐧

𝑬𝒃−𝟏,𝒊−𝟏 + 𝟏

𝑬𝒃−𝟏,𝒊 + 𝟏

𝑬𝒃,𝒊−𝟏 + 𝟏

Base cases:

𝑬𝟎,𝟎 = 𝟎

𝑬𝟎,𝒊 = 𝒊
𝑬𝒊,𝟎 = 𝟎



Algorithm Theory, WS 2016/17 Fabian Kuhn 13

Example

0 0

1 0

2 1

3 2

0 0

1 1

0 0

1 1

1 2

2 2

4 3

5 4

3 2

4 3

2 2

3 3

3 4

3 4

0 0

0 1

1 1

2 2

0 0

1 1

0 0

1 1

2 2

2 3

3 3

4 4

2 3

3 2

2 2

3 3

4 5

3 4

𝒎

𝒖

𝒍

𝒕

𝒊

𝒎 𝒂 𝒕 𝒉 𝒆 𝒎 𝒂 𝒕 𝒊 𝒄 𝒔



Algorithm Theory, WS 2016/17 Fabian Kuhn 14

Approximate String Matching

• Optimal matching consists of optimal sub-matchings

• Optimal matching can be computed in 𝑂(𝑚𝑛) time

• Get matching(s):
– Start from minimum entry/entries in bottom row

– Follow path(s) to top row

• Algorithm to compute 𝐸(𝑏, 𝑖) identical to edit distance 
algorithm, except for the initialization of 𝐸(𝑏, 0)



Algorithm Theory, WS 2016/17 Fabian Kuhn 15

Related Problems in Bioinformatics

Sequence Alignment:

Find optimal alignment of two given DNA, RNA, or amino acid 
sequences.

G A – C G G A T T A G

G A T C G G A A T - G

Global vs. Local Alignment:

• Global alignment: find optimal alignment of 2 sequences

• Local alignment: find optimal alignment of sequence 1 
(patter) with sub-sequence of sequence 2 (text)


