UNI

"
Chapter 3

Dynamic Programming

FREIBURG

Algorithm Theory
WS 2016/17

Fabian Kuhn

Dynamic Programming = lwisien + Howesitadion

UNI
f

FREIBURG

,Memoization” for increasing the efficiency of a recursive solution:

* Only the first time a sub-problem is encountered, its solution is
computed and then stored in a table. Each subsequent time that
the subproblem is encountered, the value stored in the table is

simply looked up and returned
(without repeated computation!).

 Computing the solution: For each sub-problem, store how the
value is obtained (according to which recursive rule).

Algorithm Theory, WS 2016/17 Fabian Kuhn 2

Dynamic Programming

UNI

FREIBURG

Dynamic programming / memoization can be applied if

* Optimal solution contains optimal solutions to sub-problems
(recursive structure)

* Number of sub-problems that need to be considered is small

Algorithm Theory, WS 2016/17 Fabian Kuhn

Edit Distance

UNI
f

FREIBURG

Given: Two strings A = a,a, ...a,;, and B = b1b, ... b,

Goal: Determine the minimum number D (4, B) of edit
operations required to transform A into B

Edit operations:
Fa) Replace a character from string A by a character from B

b) Delete a character from string A
Lc) Insert a character from string B into A

mlaj= £t hem- - at 1 c 1 an
m\jull £t 1 pl1catioz=--—-n

Algorithm Theory, WS 2016/17 Fabian Kuhn 4

Computation of the Edit Distance

Three ways of ending an “alignment” between A, and By:

C—

1. ay is replaced by by: A, %
{
Dy,p = Di—1,0-1 + c(ay, by) Be ®,
- e
2. ay is deleted: 2
o
Dy.e = Di_1,¢ + c(ay, &) -

3. byisinserted:

Dy ¢ = Dy p—1 + c(&,by)

Algorithm Theory, WS 2016/17 Fabian Kuhn

UNI
f

FREIBURG

UNI

Computing the Edit Distance

FREIBURG

* Recurrence relation (for k, ¥ = 1)

(Dy—1p-1 + c(ag, bp)) (Dy—14p-1+1/0)
Dy,=min{Dy_1, +c(ay,e) ;=min{Dx_1, +1 !
Dy o—1 +c(eby) | Dke-1 +1 |

|
unit cost model

* Needtocompute D;jforall0 <i<k,0<j<{¥: |

(-Do,o: O K
Do, = f‘D°/J“ v s 53)

. = + C(a;, €)
(‘bt/(’ (-ulo ((§] '?

Algorithm Theory, WS 2016/17 Fabian Kuhn 0 6

Edit Distance: Summary

UNI

FREIBURG

* Edit distance between two strings of length m and n can be
computed in O(mn) time.

e Obtain the edit operations:
— for each cell, store which rule(s) apply to fill the cell
— track path backwards from cell (m, n)

— can also be used to get all optimal “alignments”

* Unit cost model:
— interesting special case
— each edit operation costs 1

Algorithm Theory, WS 2016/17 Fabian Kuhn

Approximate String Matching >

UNI
f

FREIBURG

Given: strings T = t;t, ... t,, (text)and P = pyp, ... p,, (pattern).

ppass—

Goal: Find aninterval [, 5], 1 < r < s < n such that the sub-string
T, ¢ ==t ...tg is the one with highest similarity to the pattern P:

arg min D (TT,S, P)

1<r<s<n

r S
\
v N

P,

Algorithm Theory, WS 2016/17 Fabian Kuhn 8

UNI

Approximate String Matching

FREIBURG

Naive Solution:
foralll1 <r<s<ndo

2
compute D(T,,.,S,_If) O(" MM)
choose the minimum

Algorithm Theory, WS 2016/17 Fabian Kuhn 9

Approximate String Matching

UNI
f

FREIBURG

A related problem:

* For each position s in the text and each position i in the
pattern compute the minimum edit distance E(i, s) between
P; = p, ...p; and any substring T’. ¢ of T that ends at position s.

&) ©

P; =pg ..p;

Algorithm Theory, WS 2016/17 Fabian Kuhn 10

Approximate String I\/IatchingT

UNI
f

FREIBURG

Three ways of ending optimal alignment between T, and P;:

1. t, isreplaced by p;:

Ep; =Ep_1i—1 + c(tp,pi)

2. tp is deleted:
Epi =Ep_q; + c(tp, &)

3. p;isinserted:

Ey; =Epi—q1 +c(ep;)

Algorithm Theory, WS 2016/17

’_ {b
2’ i .
| |
*:_,,t’ﬂb?
?i-l
T i
N
Iy
)
L,_?__,_E -
b
\ R
\ I
\“‘T;_'O?c
Fabian Kuhn

11

Approximate String Matching

UNI
f

FREIBURG

Recurrence relation (unit cost model):

(Ep_15-1 +1)
Eb,i = min- Eb—l,i +1;
KEb,i—l + 1)

Base cases:

EO,():O
E':.

Algorithm Theory, WS 2016/17 Fabian Kuhn

12

th"\-\d
Example @

0
! " m a t h e |

a t 1’/ ¢ s

UNI
i

FREIBURG

0~ '
! \\\ 1 \\ \\
v
m T : N\ \ \
\ N\
N N
u
\\ N\ N\
l S|
N
N\ N
l
—
Eb o Cosl ar \xs* qhsuw\u* Mma -t (-
g Py Wil subde o] " ,
1y [Uil t(
\ Qu&?g W QoS
Algorithm Theory, WS 2016/1 Fabian Kuhn 13

Approximate String Matching

UNI

FREIBURG

e Optimal matching consists of optimal sub-matchings

* Optimal matching can be computed in O(mn) time

* Get matching(s):
— Start from minimum entry/entries in bottom row
— Follow path(s) to top row

* Algorithm to compute E (b, i) identical to edit distance
algorithm, except for the initialization of E (b, 0)

Algorithm Theory, WS 2016/17 Fabian Kuhn

14

Related Problems in Bioinformatics

Sequence Alignment:

Find optimal alignment of two given DNA, RNA, or amino acid
sequences.

GA-CGGATTASZG
GATCGGAAT -G

Global vs. Local Alignment:
* Global alignment: find optimal alignment of 2 sequences

* Local alignment: find optimal alignment of sequence 1
(patter) with sub-sequence of sequence 2 (text)

Algorithm Theory, WS 2016/17 Fabian Kuhn

UNI
f

FREIBURG

