Chapter 5
Data Structures

Algorithm Theory
WS 2016/17

Fabian Kuhn

UNI

FREIBURG

Examples

Dictionary:
* Operations: insert(key,value), delete(key), find(key)

* Implementations:
— Linked list: all operations take O (n) time (n: size of data structure)
— Balanced binary tree: all operations take O(logn) time
— Hash table: all operations take O(1) times (with some assumptions)

Stack (LIFO Queue):

e Operations: push, pull

* Linked list: O (1) for both operations
(FIFO) Queue:

* Operations: enqueue, dequeue

* Linked list: O(1) time for both operations

Here: Priority Queues (heaps), Union-Find data structure
Algorithm Theory, WS 2016/17 Fabian Kuhn

UNI
f

FREIBURG

UNI

Dijkstra’s Algorithm

FREIBURG

Single-Source Shortest Path Problem:

* Given: graph G = (V, E) with edge weights w(e) > Ofore € E
source nodes € V

* Goal: compute shortest paths fromstoallv eV

Dijkstra’s Algorithm:

1. Initialize d(s,s) = 0andd(s,v) = o forallv # s

2. All nodes are unmarked

3. Get unmarked node u which minimizes d (s, u):

4. Foralle = {u,v} € E, d(s,v) = min{d(s,v),d(s,u) + w(e)}
5 mark node u

6. Until all nodes are marked

Algorithm Theory, WS 2016/17 Fabian Kuhn 3

Example

UNI
f

FREIBURG

L —2Na

23
13 4

11 19 -

0 20

18 1

Algorithm Theory, WS 2016/17 Fabian Kuhn 4

UNI

Example

FREIBURG

(00)
. (o0
4 23
1 13 00
6 2
2 (o)
1 17 3
17 19
19 3
20
0 20
18 18 1

Algorithm Theory, WS 2016/17 Fabian Kuhn 5

Example

UNI
f

FREIBURG

L —2Na

4
. o0
4 23
13
1 14
6 2
2 o)
1 7 3
17 19
19 3
20
0 20
18 18 1

Algorithm Theory, WS 2016/17 Fabian Kuhn 6

Example

UNI
f

FREIBURG

L5~ a

4
. o0
4 23
13
1 13
6 2
2 o0
1 7 3
17 19
19 A
20
0 20
18 18 1

Algorithm Theory, WS 2016/17 Fabian Kuhn 7

Example

UNI
f

FREIBURG

L s

4
. 37,
4 23
13
1 13
6 2
2 o0
1 7 3
17 19
19 A
20
0 20
18 18 1

Algorithm Theory, WS 2016/17 Fabian Kuhn 8

Example

UNI
f

FREIBURG

L5~ a

4
. 37
4 23
1 13 9
6 2
2 ®)
1 7 3
17 19
19 3
20
0 20
18 18 1

Algorithm Theory, WS 2016/17 Fabian Kuhn 9

Example

UNI
f

FREIBURG

L5~ a

4
. 19
4 23
1 13 9
6 2
2 12)
1 7 3
17 11
19 3
20
0 20
18 18 1

Algorithm Theory, WS 2016/17 Fabian Kuhn 10

Example

UNI
f

FREIBURG

L5~ a

4
. 19
4 23
1 13 9
6 2
2 12)
1 7 3
17 11
19 3
20
0 13
18 12 1

Algorithm Theory, WS 2016/17 Fabian Kuhn 11

Implementation of Dijkstra’s Algorithm ;

UNI
FREIBURG

Dijkstra’s Algorithm:

1. Initialize d(s,s) = 0and d(s,v) = o forallv # s

2. All nodes v # s are unmarked

3. Get unmarked node u which minimizes d (s, u):

4. Foralle = {u,v} € E, d(s,v) = min{d(s,v),d(s,u) + w(e)}

5. mark node u

6. Until all nodes are marked

Algorithm Theory, WS 2016/17 Fabian Kuhn 12

Priority Queue / Heap

UNI
f

FREIBURG

» Stores (key,data) pairs (like dictionary)
* But, different set of operations:

* Initialize-Heap: creates new empty heap

* Is-Empty: returns true if heap is empty

* Insert(key,data): inserts (key,data)-pair, returns pointer to entry
* Get-Min: returns (key,data)-pair with minimum key

* Delete-Min: deletes minimum (key,data)-pair

* Decrease-Key(entry,newkey): decreases key of entry to newkey
 Merge: merges two heaps into one

Algorithm Theory, WS 2016/17 Fabian Kuhn 13

Implementation of Dijkstra’s Algorithm ;

UNI
FREIBURG

Store nodes in a priority queue, use d(s, v) as keys:
1. Initialize d(s,s) = 0and d(s,v) = o forallv # s
2. All nodes v # s are unmarked

3. Get unmarked node u which minimizes d (s, u):

4, mark node u

5. Foralle = {u,v} € E, d(s,v) = min{d(s,v),d(s,u) + w(e)}

6. Until all nodes are marked

Algorithm Theory, WS 2016/17 Fabian Kuhn 14

Analysis

UNI

Number of priority queue operations for Dijkstra:

* [nitialize-Heap: 1

* Is-Empty: V|
* Insert: V]
* Get-Min: V

« Delete-Min: |V
e Decrease-Key: |E|

* Merge: 0

Algorithm Theory, WS 2016/17 Fabian Kuhn

15

FREIBURG

Priority Queue Implementation

UNI
f

FREIBURG

Implementation as min-heap: o

- complete binary tree,
e.g., stored in an array

Algorithm Theory, WS 2016/17

Fabian Kuhn

16

Priority Queue Implementation

UNI
f

FREIBURG

Implementation as min-heap: o

2 e e, R nS
Initialize-Heap: 0(1) ° e @ o
* |s-Empty: 0o(1) e @

* |nsert: O(logn)

* Get-Min: 0(1)
e Delete-Min: 0(]0g n)
* Decrease-Key: O(logn)

* Merge (heaps of size mandn, m < n): O(mlogn)

Algorithm Theory, WS 2016/17 Fabian Kuhn

17

Can We Do Better?

UNI
FREIBURG

* Cost of Dijkstra with complete binary min-heap implementation:
O(|E[log|V])

* Binary heap:
insert, delete-min, and decrease-key cost O (logn)
merging two heaps is expensive

* One of the operations insert or delete-min must cost (2(logn):

— Heap-Sort:
Insert n elements into heap, then take out the minimum n times

— (Comparison-based) sorting costs at least Q(nlogn).

* But maybe we can improve merge, decrease-key, and one of the
other two operations?

Algorithm Theory, WS 2016/17 Fabian Kuhn 18

Fibonacci Heaps

UNI
FREIBURG

Structure:

A Fibonacci heap H consists of a collection of trees satisfying the
min-heap property.

Min-Heap Property:

Key of a node v < keys of all nodes in any sub-tree of v

Algorithm Theory, WS 2016/17 Fabian Kuhn 19

Fibonacci Heaps

UNI

FREIBURG

Structure:

A Fibonacci heap H consists of a collection of trees satisfying the
min-heap property.

Variables:
« H.min: root of the tree containing the (a) minimum key

 H.rootlist: circular, doubly linked, unordered list containing
the roots of all trees

e H.size: number of nodes currently in H

Lazy Merging:

 To reduce the number of trees, sometimes, trees need to be
merged

* Lazy merging: Do not merge as long as possible...

Algorithm Theory, WS 2016/17 Fabian Kuhn 20

Trees in Fibonacci Heaps

Structure of a single node v: /‘

/4

parent

1ybu

key | degree

U9l

child/ mark

/

* v.child: points to circular, doubly linked and unordered list of
the children of v

* v.left, v.right: pointers to siblings (in doubly linked list)
 v.mark: will be used later...

Advantages of circular, doubly linked lists:
e Deleting an element takes constant time
* Concatenating two lists takes constant time

Algorithm Theory, WS 2016/17 Fabian Kuhn 21

UNI
f

FREIBURG

Example

UNI

FREIBURG

@

Algorithm Theory, WS 2016/17

Figure: Cormen et al., Introduction to Algorithms

Fabian Kuhn

22

Simple (Lazy) Operations

UNI

FREIBURG

Initialize-Heap H.:
e H.rootlist := H.min := null

Merge heaps H and H':
e concatenate root lists
 update H.min

Insert element e into H:

* create new one-node tree containing e 2> H’
— mark of root node is set to false

* merge heaps H and H'

Get minimum element of H:
e return H.min

Algorithm Theory, WS 2016/17 Fabian Kuhn 23

Operation Delete-Min

UNI
f

FREIBURG

Delete the node with minimum key from H and return its element:

m = H.min;
if H.size > 0 then
remove H. min from H.rootlist;
add H.min. child (list) to H.rootlist
H.Consolidate();

A S

// Repeatedly merge nodes with equal degree in the root list
// until degrees of nodes in the root list are distinct.
// Determine the element with minimum key

6. returnm

Algorithm Theory, WS 2016/17 Fabian Kuhn 24

Rank and Maximum Degree

UNI

FREIBURG

Ranks of nodes, trees, heap:

Node v:
 rank(v): degree of v (number of children of v)

Tree T
 rank(T): rank (degree) of root node of T

Heap H:
* rank(H): maximum degree (#children) of any node in H

Assumption (n: number of nodes in H):
rank(H) < D(n)

— for a known function D (n)

Algorithm Theory, WS 2016/17 Fabian Kuhn

25

Merging Two Trees

UNI
f

FREIBURG

Given: Heap-ordered trees T, T' with rank(T) = rank(T")

* Assume: min-key of T < min-key of T’

Operation link(T,T'): link
T / \ T’

° Removes tree T’ from rOOt IiSt
and adds T’ to child list of T ;i ;E

 rank(T) :=rank(T) + 1
 (T'.mark = false)

T

Algorithm Theory, WS 2016/17 Fabian Kuhn 26

Consolidation of Root List

UNI

Array A pointing to find roots with the same rank:

0 1 2 D(n)

FREIBURG

Consolidate:
fori := 0to D(n) do Ali] := null;

Time:
O(|H.rootlist|+D(n))

while H.rootlist # null do
T := “delete and return first element of H.rootlist”
while A[rank(T)] # null do
T' = Alrank(T)];
Alrank(T)] := null;
T :=link(T,T")
Alrank(T)]| =T
Create new H.rootlist and H. min

Algorithm Theory, WS 2016/17 Fabian Kuhn 27

L X N O Uk WWDNRE

Consolidate Example

link

@ B g ------ ----- &0 @

Algorithm Theory, WS 2016/17 Fabian Kuhn

Consolidate Example

link

-------------------- TGO
2 @ ¥ @
5

Algorithm Theory, WS 2016/17 Fabian Kuhn

Consolidate Example

Algorithm Theory, WS 2016/17 Fabian Kuhn

30

Consolidate Example

link

Algorithm Theory, WS 2016/17 Fabian Kuhn

31

Consolidate Example

Algorithm Theory, WS 2016/17 Fabian Kuhn

32

Consolidate Example

Algorithm Theory, WS 2016/17 Fabian Kuhn

33

Operation Decrease-Key

UNI
f

FREIBURG

Decrease-Key(v, x): (decrease key of node v to new value x)

if x = v. key then return;
v. key := x; update H.min;
if v € H.rootlist V x = v.parent. key then return
repeat
parent = v.parent;
H.cut(v);
v = parent;
until =(v.mark) vV v € H.rootlist;

L X N O Uk WWDNRE

if v € H.rootlist then v.mark = true;

Algorithm Theory, WS 2016/17 Fabian Kuhn

34

Operation Cut(v)

UNI
f

FREIBURG

Operation H. cut(v):
e Cuts v’s sub-tree from its parent and adds v to rootlist

if v &€ H.rootlist then
// cut the link between v and its parent
rank(v.parent) = rank(v.parent) — 1;
remove v from v.parent. child (list)
v.parent = null;

A A T o

add v to H.rootlist; v.mark := false;

Algorithm Theory, WS 2016/17 Fabian Kuhn 35

Decrease-Key Example

UNI

FREIBURG

e Green nodes are marked

Algorithm Theory, WS 2016/17 Fabian Kuhn

36

UNI

Fibonacci Heaps Marks

FREIBURG

 Nodes in the root list (the tree roots) are always unmarked
— If a node is added to the root list (insert, decrease-key), the
mark of the node is set to false.

 Nodes not in the root list can only get marked when a subtree
is cut in a decrease-key operation

* Anode vis marked if and only if v is not in the root list and v
has lost a child since v was attached to its current parent

— a node can only change its parent by being moved to the root list

Algorithm Theory, WS 2016/17 Fabian Kuhn 37

Fibonacci Heap Marks

UNI
FREIBURG

History of a node v:

v is being linked to a node

a child of v is cut

a second child of v is cut

v.mark = false

v.mark = true

H.cut(v);
v.mark = false

 Hence, the boolean value v. mark indicates whether node v has
lost a child since the last time v was made the child of another

node.

 Nodes v in the root list always have v.mark = false

Algorithm Theory, WS 2016/17 Fabian Kuhn

38

Cost of Delete-Min & Decrease-Key

UNI

FREIBURG

Delete-Min:

1. Delete min. root r and add r. child to H.rootlist
time: 0(1)

2. Consolidate H.rootlist
time: O(length of H.rootlist + D(n))

e Step 2 can potentially be linear in n (size of H)

Decrease-Key (at node v):

1. If new key < parent key, cut sub-tree of node v
time: 0(1)

2. Cascading cuts up the tree as long as nodes are marked
time: O (number of consecutive marked nodes)

e Step 2 can potentially be linearin n

Exercises: Both operations can take ®(n) time in the worst case!

Algorithm Theory, WS 2016/17 Fabian Kuhn

39

Cost of Delete-Min & Decrease-Key

UNI

FREIBURG

* Cost of delete-min and decrease-key can be O(n)...

— Seems a large price to pay to get insert and merge in O(1) time

 Maybe, the operations are efficient most of the time?

— |t seems to require a lot of operations to get a long rootlist and thus,
an expensive consolidate operation

— In each decrease-key operation, at most one node gets marked:
We need a lot of decrease-key operations to get an expensive
decrease-key operation

* Can we show that the average cost per operation is small?

* We can =2 requires amortized analysis

Algorithm Theory, WS 2016/17 Fabian Kuhn

40

