Chapter 5
Data Structures

Algorithm Theory
WS 2016/17

Fabian Kuhn

UNI

FREIBURG

Examples

UNI

FREIBURG

Dictionary:
* Operations: insert(key,value), delete(key), find(key)

* Implementations:
— Linked list: all operations take O (n) time (n: size of data structure)
— Balanced binary tree: all operations take O(logn) time
— Hash table: all operations take O(1) times (with some assumptions)

Stack (LIFO Queue):

e Operations: push, pull

* Linked list: O (1) for both operations
(FIFO) Queue:

* Operations: enqueue, dequeue

* Linked list: O(1) time for both operations

Here: Priority Queues (heaps), Union-Find data structure
Algorithm Theory, WS 2016/17 Fabian Kuhn

UNI

Dijkstra’s Algorithm

FREIBURG

Single-Source Shortest Path Problem:

* Given: graph G = (V, E) with edge weights w(e) > Ofore € E
source nodes € V

* Goal: compute shortest paths fromstoallv eV oAd A
— =
Dijkstra’s Algorithm: —
2

Initialize d(s,s) = 0and d(s,v) = o forallv # s

1
2. All nodes are unmarked

3. Get unmarked node u which minimizes d (s, u):

4. Foralle = {u,v} € E, d(s,v) = min{d(s,v),d(s,u) + w(e)}
5 mark node u

6. Until all nodes are marked

Algorithm Theory, WS 2016/17 Fabian Kuhn 3

Example

UNI
f

FREIBURG

L —2Na

4 23
a 13 8
6 2
2 o)
1 02 3
17 0
19 3
g 20 a
18 o 1

Algorithm Theory, WS 2016/17 Fabian Kuhn 4

UNI

Example

FREIBURG

LN a

. [0,
4 23
i "
6 2
2 ()
1 1] 3
17 : 19
19 3
20
0 20
18 18 1

Algorithm Theory, WS 2016/17 Fabian Kuhn 5

Example

UNI
f

FREIBURG

L —2Na

4
. o0
4 23
13
1 14
6 2
2 o)
1 7 3
17 19
19 3
20
0 20
18 18 1

Algorithm Theory, WS 2016/17 Fabian Kuhn 6

Example

UNI
f

FREIBURG

L5~ a

4
. o0
4 23
13
1 13
6 2
2 o0
1 7 3
17 19
19 A
20
0 20
18 18 1

Algorithm Theory, WS 2016/17 Fabian Kuhn 7

Example

UNI
f

FREIBURG

L s

4
. 37,
4 23
13
1 13
6 2
2 o0
1 7 3
17 19
19 A
20
0 20
18 18 1

Algorithm Theory, WS 2016/17 Fabian Kuhn 8

Example

UNI
f

FREIBURG

L5~ a

4
. 37
4 23
1 13 9
6 2
2 ®)
1 7 3
17 19
19 3
20
0 20
18 18 1

Algorithm Theory, WS 2016/17 Fabian Kuhn 9

Example

UNI
f

FREIBURG

L5~ a

4
. 19
4 23
1 13 9
6 2
2 12)
1 7 3
17 11
19 3
20
0 20
18 18 1

Algorithm Theory, WS 2016/17 Fabian Kuhn 10

Example

UNI
f

FREIBURG

L5~ a

4
. 19
4 23
1 13 9
6 2
2 12)
1 7 3
17 11
19 3
20
0 13
18 12 1

Algorithm Theory, WS 2016/17 Fabian Kuhn 11

Implementation of Dijkstra’s Algorithm

UNI
f

FREIBURG

Dijkstra’s Algorithm:

1. Initialize d(s,s) = 0and d(s,v) = o forallv # s

2. All nodes v # s are unmarked
data shmcdwre with Uuwarled wodas

add all nodoe aud Y At QSL
3. Get unmarked node u which minimizes d (s, u):
5&("‘ \LOJ.Q iu\ DS uﬁ‘“k \M)w\ a((g,u)

4. Foralle = {u,v} € E, d(s,v) = min{d(s,v),d(s,u) + w(e)}
?o*ouka‘ho uga{ak dd. esh. »;? uﬁn‘suoo*s
decrense
5. mark node u

dolele w {ou DS

6. Until all nodes are marked

Algorithm Theory, WS 2016/17 Fabian Kuhn 12

Priority Queue / Heap

UNI
FREIBURG

é@'y WAB‘.{'

Stores (key,data) pairs (like dictionary)
But, different set of operations:

Initialize-Heap: creates new empty heap
Is-Empty: returns true if heap is empty
Insert(key,data): inserts (key,data)-pair, returns pointer to entry

—_—

Get-Min: returns (key,data)-pair with minimum key

| .. S coubnt !
Delete-Min: deletes minimum (key,data)-pair —
Decrease-Key(entry,newkey): decreases key of entry to neLkey

Merge: merges two heaps into one

Algorithm Theory, WS 2016/17 Fabian Kuhn 13

UNI

Implementation of Dijkstra’s Algorithm

FREIBURG

Store nodes in a priority queue, use d(s, V) as keys:

1. Initialize d(s,s) = 0and d(s,v) = o forallv # s

2. All nodes v # s are unmarked
crade ww (ewmply) PR

‘\uw‘ all uedog (wr”.\ oQisl. Qs'l. as 'cﬂta)
3. Get unmarked node u which minimizes d (s, u):

}@A-wlw

4. mark node u

&Ql@k - Wi e wwwe rlead \AQ'.'LLG"S

5. Foralle = {u,v} € E, d(s,v) = min{d(s,v),d(s,u) + w(e)}
%;. all \ABSLLNS s docreage- LOo) Tﬁ W2 Qsarg.

6. Until all nodes are marked

Algorithm Theory, WS 2016/17 Fabian Kuhn 14

Analysis

Number of priority queue operations for Dijkstra:

e Initialize-Heap: 1 G = (V,E)
* Is-Empty: V]
* Insert: V]
* Get-Min: V

« Delete-Min: |V
. Decrease-Key:7.|£| < |V

* Merge: 0

Algorithm Theory, WS 2016/17 Fabian Kuhn

UNI
f

FREIBURG

UNI

Priority Queue Implementation

FREIBURG

Implementation as min-heap:
—_—

- complete binary tree,
e.g., stored in an array

Algorithm Theory, WS 2016/17 Fabian Kuhn 16

UNI

Priority Queue Implementation

FREIBURG

Implementation as min-heap:

- complete binary tree,

e.g., stored in an array
————

Initialize-Heap: 0(1)

* |s-Empty: 0(1)
* Insert: o(1
é(<_9:—gﬂ)— “Diksdew:
* Get-Min: 0(1)
* Delete-Min: 0(10§n) Clie Q%NO
* Decrease-Key: 0(logn) 'O(‘M fog)

* Merge (heaps of size mandn, m < n): O(mlogn)

Algorithm Theory, WS 2016/17 Fabian Kuhn 17

Can We Do Better?

UNI
FREIBURG

Cost of Dijkstra with complete binary min-heap implementation:
O(|E[log|V])

Binary heap:
insert, delete-min, and decrease-key cost O (logn)
merging two heaps is expensive

One of the operations insert or delete-min must cost (L(logn):

_—

— Heap-Sort:
Insert n elements into heap, then take out the minimum n times

— (Comparison-based) sorting costs at least Q(nlogn).

But maybe we can improve merge, decrease-key, and one of the
other two operations? B

Algorithm Theory, WS 2016/17 Fabian Kuhn 18

Fibonacci Heaps

UNI

FREIBURG

Structure:

A Fibonacci heap H consists of a collection of trees satisfying the

| min-heap ﬁroperty. h

Min-Heap Property:
Key of a node v < keys of all nodes in any sub-tree of v

Algorithm Theory, WS 2016/17 Fabian Kuhn

19

Fibonacci Heaps

UNI
f

FREIBURG

Structure:

A Fibonacci heap H consists of a collection of trees satisfying the

. H.miw
min-heap property. & =
*\. (b&(‘/':/j@ 0(——/0\0—?? -

~—

« H.min: root of the tree containing the (a) minimum key

—_—

Variables:

 H.rootlist: circular, doubly linked, unordered list containing
the roots of all trees

e H.size: number of nodes currently in H
;

ﬁazy Merging:
 To reduce the number of trees, sometimes, trees need to be
merged

L- Lw: Do not merge as long as possible...

Algorithm Theory, WS 2016/17 Fabian Kuhn 20

Trees in Fibonacci Heaps

UNI

FREIBURG

Structure of a single node v:

/

LA e

/4

parent /
—_ A2 // =.
@ key | degree ‘%
child,
/

* v.child: points to circular, doubly linked and unordered list of

the children of v

* v.left, v.right: pointers to siblings (in doubly linked list)

e v.mark: will be used later...

Advantages of circular, doubly linked lists:

e Deleting an element takes constant time

* Concatenating two lists takes constant time

Fabian Kuhn

Algorithm Theory, WS 2016/17

21

Example

UNI
i

FREIBURG

Figure: Cormen et al., Introduction to Algorithms

Algorithm Theory, WS 2016/17 Fabian Kuhn 22

Simple (Lazy) Operations

UNI

FREIBURG

Initialize-Heap H.:
e H.rootlist := H.min := null Lalele - urlu

Merge heaps H and H': oQQuem—\&@

* concatenate root lists
* update H.min

Insert element e into H:

* create new one-node tree containing e > H’
— mark of root node is set to false

* merge heaps H and H'

Get minimum element of H:
e return H.min

Algorithm Theory, WS 2016/17 Fabian Kuhn

23

Operation Delete-Min

UNI
f

FREIBURG

Delete the node with minimum key from H and return its element:
/f(u:u
m = H.mill; 0—-0_
if H.size > 0 then e
remove chin from H.rootlist;
add H.min. child (list) to H.rootlist /é%\

FH. Consolidate(); o /:\

A S

// Repeatedly merge nodes with equal degree in the root list
// until degrees of nodes in the root list are distinct.
u/ Determine the element with minimum key

6. returnm

Algorithm Theory, WS 2016/17 Fabian Kuhn 24

Rank and Maximum Degree

UNI

FREIBURG

Ranks of nodes, trees, heap:

Node v:
* rank(v): degree of v (number of children of v)

Tree T
 rank(T): rank (degree) of root node of T

Heap H:
* rank(H): maximum degree (#children) of any node in H

Assumption (n: number of nodes in H):

rank(H) < D(n)
e
— for a known function D (n)

Algorithm Theory, WS 2016/17 Fabian Kuhn

25

Merging Two Trees

UNI
f

FREIBURG

Given: Heap-ordered trees T, T' with rank(T) = rank(T")

* Assume: min-key of T < min-key of T’

Operation link(T,T'): / link
e Removes tree T' from root list \l\

and adds T’ to child list of T

 rank(T) :=rank(T) + 1
 (T'.mark = false)

Algorithm Theory, WS 2016/17 Fabian Kuhn 26

Consolidation of Root List e = 1H.mellis?)

UNI
FREIBURG

Array A pointing to find roots with the same rank:

01 2 D(n)
Consolidate: R
Time:

1. fori:=0to D(n)do Ali] := null; O(|H.rootlist|+D(n))
2. while H.rootlist # null do ——
lazpuz couSo(Jquole
3. z := “delete and return first element of H.rootlist”
4. while A[rank(T)] # null do
5. T' == Alrank(T)]; ‘
6. Alrank(T)] := null; F/%\ S
7. T = link(T,T")
- ™4+
8. Alrank(T)]| =T a
9.

Create new H.rootlist and H.min 7"

Algorithm Theory, WS 2016/17 Fabian Kuhn 27

Consolidate Example

link

@ B g ------ ----- &0 @

©
19 (@

Algorithm Theory, WS 2016/17 Fabian Kuhn

Consolidate Example

link

-------------------- TGO
2 @ ¥ @
5

Algorithm Theory, WS 2016/17 Fabian Kuhn

Consolidate Example

Algorithm Theory, WS 2016/17 Fabian Kuhn

30

Consolidate Example

link

Algorithm Theory, WS 2016/17 Fabian Kuhn

31

Consolidate Example

Algorithm Theory, WS 2016/17 Fabian Kuhn

32

Consolidate Example

Algorithm Theory, WS 2016/17 Fabian Kuhn

33

Operation Decrease-Key

UNI
f

FREIBURG

Decrease-Key(v, x): (decrease key of node v to new value x)

if x = v. key then return;
v. key := x; update H.min;

if v € H.rootlist V x = v.parent. key then rg’g‘tirn

repeat o
parent = v.parent;
H.cut(v); (=) dacoeay

V = parent, / \

until =(v.mark) vV v € H.rootlist;

L X N O Uk WWDNRE

if v € H.rootlist then v.mark = true;

———

Algorithm Theory, WS 2016/17 Fabian Kuhn

34

Operation Cut(v)

UNI
f

FREIBURG

Operation H. cut(v):
e Cuts v’s sub-tree from its parent and adds v to rootlist

v -Puw..l-

if v & H.rootlist then
// cut the link between v and its parent
rank(v.parent) = rank(v.parent) — 1;

remove v from v.parent. child (list)

v.parent := null;

A A T o

add v to H.rootlist; v.mark := false;

Algorithm Theory, WS 2016/17 Fabian Kuhn 35

Decrease-Key Example

UNI

FREIBURG

e Green nodes are marked

Algorithm Theory, WS 2016/17 Fabian Kuhn

36

UNI

Fibonacci Heaps Marks

FREIBURG

 Nodes in the root list (the tree roots) are always unmarked
— If a node is added to the root list (insert, decrease-key), the
mark of the node is set to false.

 Nodes not in the root list can only get marked when a subtree
is cut in a decrease-key operation

* Anode vis marked if and only if v is not in the root list and v
has lost a child since v was attached to its current parent

— a node can only change its parent by being moved to the root list

Algorithm Theory, WS 2016/17 Fabian Kuhn 37

Fibonacci Heap Marks

UNI
FREIBURG

History of a node v:

v is being linked to a node

a child of v is cut

a second child of v is cut

v.mark = false

v.mark = true

H.cut(v);
v.mark = false

 Hence, the boolean value v. mark indicates whether node v has
lost a child since the last time v was made the child of another

node.

 Nodes v in the root list always have v.mark = false

Algorithm Theory, WS 2016/17 Fabian Kuhn

38

Cost of Delete-Min & Decrease-Key

UNI
f

FREIBURG

Delete-Min:

1. Delete min. root r and add r. child to H.rootlist
time: 0(1)

2. Consolidate H.rootlist
time: O(length of H.rootlist + D(n)) —

e Step 2 can potentially be linear in n (size of H)

Decrease-Key (at node v):
1. If new key < parent key, cut sub-tree of node v
time: 0(1)
2. Cascading cuts up the tree as long as nodes are marked
time: O (number of consecutive marked nodes)

e Step 2 can potentially be linearin n

Exercises: Both operations can take ®(n) time in the worst case!

Algorithm Theory, WS 2016/17 Fabian Kuhn 39

Cost of Delete-Min & Decrease-Key

UNI

FREIBURG

* Cost of delete-min and decrease-key can be O(n)...

— Seems a large price to pay to get insert and merge in O(1) time

 Maybe, the operations are efficient most of the time?

— |t seems to require a lot of operations to get a long rootlist and thus,
an expensive consolidate operation

— In each decrease-key operation, at most one node gets marked:
We need a lot of decrease-key operations to get an expensive
decrease-key operation

* Can we show that the average cost per operation is small?

* We can =2 requires amortized analysis

Algorithm Theory, WS 2016/17 Fabian Kuhn

40

