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Examples

Dictionary:

• Operations: insert(key,value), delete(key), find(key)

• Implementations:
– Linked list: all operations take 𝑂(𝑛) time (𝑛: size of data structure)

– Balanced binary tree: all operations take 𝑂 log𝑛 time

– Hash table: all operations take 𝑂(1) times (with some assumptions)

Stack (LIFO Queue):

• Operations: push, pull

• Linked list: 𝑂(1) for both operations

(FIFO) Queue:

• Operations: enqueue, dequeue

• Linked list: 𝑂(1) time for both operations

Here: Priority Queues (heaps), Union-Find data structure
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Dijkstra’s Algorithm

Single-Source Shortest Path Problem:

• Given: graph 𝐺 = (𝑉, 𝐸) with edge weights 𝑤 𝑒 ≥ 0 for 𝑒 ∈ 𝐸
source node 𝑠 ∈ 𝑉

• Goal: compute shortest paths from 𝑠 to all 𝑣 ∈ 𝑉

Dijkstra’s Algorithm:

1. Initialize 𝑑 𝑠, 𝑠 = 0 and 𝑑 𝑠, 𝑣 = ∞ for all 𝑣 ≠ 𝑠

2. All nodes are unmarked

3. Get unmarked node 𝑢 which minimizes 𝑑(𝑠, 𝑢):

4. For all 𝑒 = 𝑢, 𝑣 ∈ 𝐸, 𝑑 𝑠, 𝑣 = min 𝑑 𝑠, 𝑣 , 𝑑 𝑠, 𝑢 + 𝑤 𝑒

5. mark node 𝑢

6. Until all nodes are marked
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Implementation of Dijkstra’s Algorithm

Dijkstra’s Algorithm:

1. Initialize 𝑑 𝑠, 𝑠 = 0 and 𝑑 𝑠, 𝑣 = ∞ for all 𝑣 ≠ 𝑠

2. All nodes 𝑣 ≠ 𝑠 are unmarked

3. Get unmarked node 𝑢 which minimizes 𝑑(𝑠, 𝑢):

4. For all 𝑒 = 𝑢, 𝑣 ∈ 𝐸, 𝑑 𝑠, 𝑣 = min 𝑑 𝑠, 𝑣 , 𝑑 𝑠, 𝑢 + 𝑤 𝑒

5. mark node 𝑢

6. Until all nodes are marked
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Priority Queue / Heap

• Stores (key,data) pairs (like dictionary)

• But, different set of operations:

• Initialize-Heap: creates new empty heap

• Is-Empty: returns true if heap is empty

• Insert(key,data): inserts (key,data)-pair, returns pointer to entry 

• Get-Min: returns (key,data)-pair with minimum key

• Delete-Min: deletes minimum (key,data)-pair

• Decrease-Key(entry,newkey): decreases key of entry to newkey

• Merge: merges two heaps into one
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Implementation of Dijkstra’s Algorithm

Store nodes in a priority queue, use 𝒅(𝒔, 𝒗) as keys:

1. Initialize 𝑑 𝑠, 𝑠 = 0 and 𝑑 𝑠, 𝑣 = ∞ for all 𝑣 ≠ 𝑠

2. All nodes 𝑣 ≠ 𝑠 are unmarked

3. Get unmarked node 𝑢 which minimizes 𝑑(𝑠, 𝑢):

4. mark node 𝑢

5. For all 𝑒 = 𝑢, 𝑣 ∈ 𝐸, 𝑑 𝑠, 𝑣 = min 𝑑 𝑠, 𝑣 , 𝑑 𝑠, 𝑢 + 𝑤 𝑒

6. Until all nodes are marked
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Analysis

Number of priority queue operations for Dijkstra:

• Initialize-Heap:

• Is-Empty:

• Insert:

• Get-Min:

• Delete-Min:

• Decrease-Key:

• Merge:

𝟏

|𝑽|

|𝑽|

|𝑽|

|𝑬|

|𝑽|

𝟎
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Priority Queue Implementation

Implementation as min-heap:

 complete binary tree,
e.g., stored in an array
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Priority Queue Implementation

Implementation as min-heap:

 complete binary tree,
e.g., stored in an array

• Initialize-Heap:

• Is-Empty:

• Insert:

• Get-Min:

• Delete-Min:

• Decrease-Key:

• Merge (heaps of size 𝑚 and 𝑛, 𝑚 ≤ 𝑛):

𝑶(𝟏)

𝑶(𝟏)

𝑶 𝐥𝐨𝐠𝒏

𝑶(𝒎 𝐥𝐨𝐠𝒏)

𝑶 𝟏

𝑶 𝐥𝐨𝐠𝒏

𝑶 𝐥𝐨𝐠𝒏
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Can We Do Better?

• Cost of Dijkstra with complete binary min-heap implementation:

𝑂 𝐸 log 𝑉

• Binary heap:
insert, delete-min, and decrease-key cost 𝑂(log 𝑛)
merging two heaps is expensive

• One of the operations insert or delete-min must cost Ω(log 𝑛):
– Heap-Sort:

Insert 𝑛 elements into heap, then take out the minimum 𝑛 times

– (Comparison-based) sorting costs at least Ω(𝑛 log 𝑛).

• But maybe we can improve merge, decrease-key, and one of the 
other two operations?
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Fibonacci Heaps

Structure:

A Fibonacci heap 𝐻 consists of a collection of trees satisfying the 
min-heap property.

Min-Heap Property:

Key of a node 𝑣 ≤ keys of all nodes in any sub-tree of 𝑣
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Fibonacci Heaps

Structure:

A Fibonacci heap 𝐻 consists of a collection of trees satisfying the 
min-heap property.

Variables:

• 𝐻.𝑚𝑖𝑛: root of the tree containing the (a) minimum key

• 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡: circular, doubly linked, unordered list containing
the roots of all trees

• 𝐻. 𝑠𝑖𝑧𝑒: number of nodes currently in 𝐻

Lazy Merging:

• To reduce the number of trees, sometimes, trees need to be 
merged

• Lazy merging: Do not merge as long as possible...
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Trees in Fibonacci Heaps

Structure of a single node 𝒗:

• 𝑣. 𝑐ℎ𝑖𝑙𝑑: points to circular, doubly linked and unordered list of
the children of 𝑣

• 𝑣. 𝑙𝑒𝑓𝑡, 𝑣. 𝑟𝑖𝑔ℎ𝑡: pointers to siblings (in doubly linked list)

• 𝑣.𝑚𝑎𝑟𝑘: will be used later…

Advantages of circular, doubly linked lists:

• Deleting an element takes constant time

• Concatenating two lists takes constant time

le
ft

parent

rig
h

tkey degree

child mark
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Example

Figure: Cormen et al., Introduction to Algorithms
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Simple (Lazy) Operations

Initialize-Heap 𝐻: 

• 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 ≔ 𝐻.𝑚𝑖𝑛 ≔ 𝑛𝑢𝑙𝑙

Merge heaps 𝐻 and 𝐻′:

• concatenate root lists

• update 𝐻.𝑚𝑖𝑛

Insert element 𝑒 into 𝐻:

• create new one-node tree containing 𝑒 H′
– mark of root node is set to 𝐟𝐚𝐥𝐬𝐞

• merge heaps 𝐻 and 𝐻′

Get minimum element of 𝐻:

• return 𝐻.𝑚𝑖𝑛
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Operation Delete-Min

Delete the node with minimum key from 𝐻 and return its element:

1. 𝑚 ≔ 𝐻.𝑚𝑖𝑛;

2. if 𝐻. 𝑠𝑖𝑧𝑒 > 0 then

3. remove 𝐻.𝑚𝑖𝑛 from 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡;

4. add 𝐻.𝑚𝑖𝑛. 𝑐ℎ𝑖𝑙𝑑 (list) to 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡

5. 𝑯.𝑪𝒐𝒏𝒔𝒐𝒍𝒊𝒅𝒂𝒕𝒆();

// Repeatedly merge nodes with equal degree in the root list
// until degrees of nodes in the root list are distinct.
// Determine the element with minimum key

6. return 𝑚
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Rank and Maximum Degree

Ranks of nodes, trees, heap:

Node 𝑣:

• 𝑟𝑎𝑛𝑘(𝑣): degree of 𝑣 (number of children of 𝑣)

Tree 𝑇:

• 𝑟𝑎𝑛𝑘 𝑇 : rank (degree) of root node of 𝑇

Heap 𝐻:

• 𝑟𝑎𝑛𝑘(𝐻): maximum degree (#children) of any node in 𝐻

Assumption (𝑛: number of nodes in 𝐻):

𝑟𝑎𝑛𝑘 𝐻 ≤ 𝐷(𝑛)

– for a known function 𝐷(𝑛)
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Merging Two Trees

Given: Heap-ordered trees 𝑇, 𝑇′ with 𝑟𝑎𝑛𝑘 𝑇 = 𝑟𝑎𝑛𝑘(𝑇′)

• Assume: min-key of 𝑇 < min-key of 𝑇′

Operation 𝒍𝒊𝒏𝒌(𝑻, 𝑻′):

• Removes tree 𝑇′ from root list
and adds 𝑇′ to child list of 𝑇

• 𝑟𝑎𝑛𝑘 𝑇 ≔ 𝑟𝑎𝑛𝑘 𝑇 + 1

• (𝑇′. 𝑚𝑎𝑟𝑘 = 𝐟𝐚𝐥𝐬𝐞)

𝑇 𝑇′

𝑙𝑖𝑛𝑘

𝑇

𝑇′
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Consolidation of Root List

Array 𝐴 pointing to find roots with the same rank:

Consolidate:

1. for 𝑖 ≔ 0 to 𝐷(𝑛) do 𝐴 𝑖 ≔ null;

2. while 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 ≠ null do

3. 𝑇 ≔ “delete and return first element of 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡”

4. while 𝐴 𝑟𝑎𝑛𝑘 𝑇 ≠ null do

5. 𝑇′ ≔ 𝐴 𝑟𝑎𝑛𝑘 𝑇 ;

6. 𝐴 𝑟𝑎𝑛𝑘 𝑇 ≔ 𝑛𝑢𝑙𝑙;

7. 𝑇 ≔ 𝑙𝑖𝑛𝑘(𝑇, 𝑇′)

8. 𝐴 𝑟𝑎𝑛𝑘 𝑇 ≔ 𝑇

9. Create new 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 and 𝐻.𝑚𝑖𝑛

⋯
0 1 2 𝐷(𝑛)

Time:

𝑶(|𝑯. 𝒓𝒐𝒐𝒕𝒍𝒊𝒔𝒕 +𝑫 𝒏
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Consolidate Example
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Operation Decrease-Key

Decrease-Key(𝒗, 𝒙): (decrease key of node 𝑣 to new value 𝑥)

1. if 𝑥 ≥ 𝑣. 𝑘𝑒𝑦 then return;

2. 𝑣. 𝑘𝑒𝑦 ≔ 𝑥; update 𝐻.𝑚𝑖𝑛;

3. if 𝑣 ∈ 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 ∨ 𝑥 ≥ 𝑣. 𝑝𝑎𝑟𝑒𝑛𝑡. 𝑘𝑒𝑦 then return

4. repeat

5. 𝑝𝑎𝑟𝑒𝑛𝑡 ≔ 𝑣. 𝑝𝑎𝑟𝑒𝑛𝑡;

6. 𝑯. 𝒄𝒖𝒕 𝒗 ;

7. 𝑣 ≔ 𝑝𝑎𝑟𝑒𝑛𝑡;

8. until ¬ 𝒗.𝒎𝒂𝒓𝒌 ∨ 𝑣 ∈ 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡;

9. if 𝑣 ∉ 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 then 𝒗.𝒎𝒂𝒓𝒌 ≔ 𝐭𝐫𝐮𝐞;
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Operation Cut(𝑣)

Operation 𝐻. 𝑐𝑢𝑡(𝑣):

• Cuts 𝑣’s sub-tree from its parent and adds 𝑣 to rootlist

1. if 𝑣 ∉ 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 then

2. // cut the link between 𝑣 and its parent

3. 𝑟𝑎𝑛𝑘 𝑣. 𝑝𝑎𝑟𝑒𝑛𝑡 ≔ 𝑟𝑎𝑛𝑘 𝑣. 𝑝𝑎𝑟𝑒𝑛𝑡 − 1;

4. remove 𝑣 from 𝑣. 𝑝𝑎𝑟𝑒𝑛𝑡. 𝑐ℎ𝑖𝑙𝑑 (list)

5. 𝑣. 𝑝𝑎𝑟𝑒𝑛𝑡 ≔ null;

6. add 𝑣 to 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡; 𝑣.𝑚𝑎𝑟𝑘 ≔ false;
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Decrease-Key Example

• Green nodes are marked
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Fibonacci Heaps Marks

• Nodes in the root list (the tree roots) are always unmarked
 If a node is added to the root list (insert, decrease-key), the

mark of the node is set to false.

• Nodes not in the root list can only get marked when a subtree 
is cut in a decrease-key operation

• A node 𝑣 is marked if and only if 𝑣 is not in the root list and 𝑣
has lost a child since 𝑣 was attached to its current parent
– a node can only change its parent by being moved to the root list
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Fibonacci Heap Marks

History of a node 𝒗:

𝑣 is being linked to a node                         𝒗.𝒎𝒂𝒓𝒌 = 𝐟𝐚𝐥𝐬𝐞

a child of 𝑣 is cut                                          𝒗.𝒎𝒂𝒓𝒌 ≔ 𝐭𝐫𝐮𝐞

a second child of 𝑣 is cut                            𝑯. 𝒄𝒖𝒕 𝒗 ;
𝒗.𝒎𝒂𝒓𝒌 ≔ 𝒇𝒂𝒍𝒔𝒆

• Hence, the boolean value 𝑣.𝑚𝑎𝑟𝑘 indicates whether node 𝑣 has 
lost a child since the last time 𝑣 was made the child of another 
node.

• Nodes 𝑣 in the root list always have 𝑣.𝑚𝑎𝑟𝑘 = false
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Cost of Delete-Min & Decrease-Key

Delete-Min:

1. Delete min. root 𝑟 and add 𝑟. 𝑐ℎ𝑖𝑙𝑑 to 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡
time: 𝑂 1

2. Consolidate 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡
time: 𝑂 length of 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 + 𝐷(𝑛)

• Step 2 can potentially be linear in 𝑛 (size of 𝐻)

Decrease-Key (at node 𝒗):

1. If new key < parent key, cut sub-tree of node 𝑣
time: 𝑂(1)

2. Cascading cuts up the tree as long as nodes are marked
time: 𝑂(number of consecutive marked nodes)

• Step 2 can potentially be linear in 𝑛

Exercises: Both operations can take 𝚯(𝒏) time in the worst case!



Algorithm Theory, WS 2016/17 Fabian Kuhn 40

Cost of Delete-Min & Decrease-Key

• Cost of delete-min and decrease-key can be Θ(𝑛)…
– Seems a large price to pay to get insert and merge in 𝑂(1) time

• Maybe, the operations are efficient most of the time?
– It seems to require a lot of operations to get a long rootlist and thus, 

an expensive consolidate operation

– In each decrease-key operation, at most one node gets marked:
We need a lot of decrease-key operations to get an expensive 
decrease-key operation

• Can we show that the average cost per operation is small?

• We can  requires amortized analysis


