Chapter 5
Data Structures

Algorithm Theory
WS 2016/17

Fabian Kuhn

UNI

FREIBURG

Priority Queue / Heap

UNI
f

FREIBURG

» Stores (key,data) pairs (like dictionary)
* But, different set of operations:

* Initialize-Heap: creates new empty heap

* Is-Empty: returns true if heap is empty

* Insert(key,data): inserts (key,data)-pair, returns pointer to entry
* Get-Min: returns (key,data)-pair with minimum key

* Delete-Min: deletes minimum (key,data)-pair

* Decrease-Key(entry,newkey): decreases key of entry to newkey
 Merge: merges two heaps into one

Algorithm Theory, WS 2016/17 Fabian Kuhn 2

Fibonacci Heap

UNI
f

FREIBURG

@

Algorithm Theory, WS 2016/17

Figure: Cormen et al., Introduction to Algorithms

Fabian Kuhn

Simple (Lazy) Operations

UNI

FREIBURG

Initialize-Heap H.:
e H.rootlist := H.min := null

Merge heaps H and H':
e concatenate root lists
 update H.min

Insert element e into H:

* create new one-node tree containing e 2> H’
— mark of root node is set to false

* merge heaps H and H'

Get minimum element of H:
e return H.min

Algorithm Theory, WS 2016/17 Fabian Kuhn

Operation Delete-Min

UNI
f

FREIBURG

Delete the node with minimum key from H and return its element:

m = H.min;
if H.size > 0 then
remove H. min from H.rootlist;
add H.min. child (list) to H.rootlist
H.Consolidate();

A S

// Repeatedly merge nodes with equal degree in the root list
// until degrees of nodes in the root list are distinct.
// Determine the element with minimum key

6. returnm

Algorithm Theory, WS 2016/17 Fabian Kuhn 5

Rank and Maximum Degree

UNI

FREIBURG

Ranks of nodes, trees, heap:

Node v:
 rank(v): degree of v (number of children of v)

Tree T
 rank(T): rank (degree) of root node of T

Heap H:
* rank(H): maximum degree (#children) of any node in H

Assumption (n: number of nodes in H):
rank(H) < D(n)

— for a known function D (n)

Algorithm Theory, WS 2016/17 Fabian Kuhn

Consolidation of Root List

UNI

Array A pointing to find roots with the same rank:

0 1 2 D(n)

FREIBURG

Consolidate:
fori := 0to D(n) do Ali] := null;

Time:
O(|H.rootlist|+D(n))

while H.rootlist # null do
T := “delete and return first element of H.rootlist”
while A[rank(T)] # null do
T' = Alrank(T)];
Alrank(T)] := null;
T :=link(T,T")
Alrank(T)]| =T
Create new H.rootlist and H. min

Algorithm Theory, WS 2016/17 Fabian Kuhn 7

L X N O Uk WWDNRE

Operation Decrease-Key

UNI
f

FREIBURG

Decrease-Key(v, x): (decrease key of node v to new value x)

if x = v. key then return;
v. key := x; update H.min;
if v € H.rootlist V x = v.parent. key then return
repeat
parent = v.parent;
H.cut(v);
v = parent;
until =(v.mark) vV v € H.rootlist;

L X N O Uk WWDNRE

if v € H.rootlist then v.mark = true;

Algorithm Theory, WS 2016/17 Fabian Kuhn

Fibonacci Heap Marks

UNI
FREIBURG

History of a node v:

v is being linked to a node

a child of v is cut

a second child of v is cut

v.mark = false

v.mark = true

H.cut(v);
v.mark = false

 Hence, the boolean value v. mark indicates whether node v has
lost a child since the last time v was made the child of another

node.

 Nodes v in the root list always have v.mark = false

Algorithm Theory, WS 2016/17 Fabian Kuhn

Cost of Delete-Min & Decrease-Key

UNI

FREIBURG

Delete-Min:

1. Delete min. root r and add r. child to H.rootlist
time: 0(1)

2. Consolidate H.rootlist
time: O(length of H.rootlist + D(n))

e Step 2 can potentially be linear in n (size of H)

Decrease-Key (at node v):

1. If new key < parent key, cut sub-tree of node v
time: 0(1)

2. Cascading cuts up the tree as long as nodes are marked
time: O (number of consecutive marked nodes)

e Step 2 can potentially be linearin n

Exercises: Both operations can take ®(n) time in the worst case!

Algorithm Theory, WS 2016/17 Fabian Kuhn

10

UNI

Fibonacci Heaps Complexity

FREIBURG

* Worst-case cost of a single delete-min or decrease-key
operation is Q(n)

* Can we prove a small worst-case amortized cost for
delete-min and decrease-key operations?

Recall:
* Data structure that allows operations Oy, ..., Oy

* We say that operation 0, has amortized cost a,, if for every
execution the total time is

k
Tsznp'ap;
p=1

where n,, is the number of operations of type 0,

Algorithm Theory, WS 2016/17 Fabian Kuhn 11

Amortized Cost of Fibonacci Heaps

UNI

FREIBURG

* [|nitialize-heap, is-empty, get-min, insert, and merge
have worst-case cost 0(1)

* Delete-min has amortized cost O(logn)
* Decrease-key has amortized cost O(1)

e Starting with an empty heap, any sequence of n operations
with at most n; delete-min operations has total cost (time)

T =0n+ngzlogn).

e We will now need the marks...

 Cost for Dijkstra: O(|E| + |V|log |V])

Algorithm Theory, WS 2016/17 Fabian Kuhn

12

UNI

Fibonacci Heaps: Marks

FREIBURG

Cycle of a node:

1. Node v is removed from root list and linked to a node
v.mark = false

2. Child node u of v is cut and added to root list
v.mark := true

3. Second child of v is cut

node v is cut as well and moved to root list
v.mark = false

The boolean value v. mark indicates whether node v has lost a
child since the last time v was made the child of another node.

Algorithm Theory, WS 2016/17 Fabian Kuhn 13

Potential Function

UNI
FREIBURG

System state characterized by two parameters:
* R:number of trees (length of H.rootlist)
e M: number of marked nodes (not in the root list)

Potential function:

b =R+2M

Example:

+ R=7,M=2 > &=11

Algorithm Theory, WS 2016/17 Fabian Kuhn 14

Actual Time of Operations

UNI

FREIBURG

* Operations: initialize-heap, is-empty, insert, get-min, merge
actual time: 0(1)

— Normalize unit time such that

tinit: tis—empty: tinsert» tget—miru tmerge <1

* Operation delete-min:
— Actual time: O(Iength of H.rootlist + D(n))

— Normalize unit time such that
tgel—min < D(n) + length of H.rootlist

e Operation descrease-key:

— Actual time: O(length of path to next unmarked ancestor)
— Normalize unit time such that

taecr—key < length of path to next unmarked ancestor

Algorithm Theory, WS 2016/17 Fabian Kuhn

15

Amortized Times

UNI

FREIBURG

Assume operation i is of type:

* initialize-heap:
— actualtime: t; < 1, potential: ®;_; = ®; =0
— amortized time: a; = t; + ¢; —P;_; <1

* is-empty, get-min:
— actual time: t; < 1, potential: ®; = ®;_; (heap doesn’t change)
— amortized time: a; = t; + ¢; —P;_1 <1

°* merge:
— Actual time: t; <1
— combined potential of both heaps: ®; = &;_4
— amortized time: a; = t; + ¢; —P;_1 <1

Algorithm Theory, WS 2016/17 Fabian Kuhn

16

Amortized Time of Insert

UNI

FREIBURG

Assume that operation i is an insert operation:
 Actualtime:¢; <1

 Potential function:

— M remains unchanged (no nodes are marked or unmarked, no marked
nodes are moved to the root list)

— R grows by 1 (one element is added to the root list)

Mi — Mi—l) Ri — Ri—l + 1
(Di — cDi—l + 1

e Amortized time:

ai=t,-+<I>,-—<Di_1S2

Algorithm Theory, WS 2016/17 Fabian Kuhn 17

Amortized Time of Delete-Min

UNI
FREIBURG

Assume that operation i is a delete-min operation:
Actual time: t; < D(n) + |H.rootlist|

Potential function ® = R + 2M:

* R:changes from |H.rootlist| to at most D(n)
e M: (# of marked nodes)

— Number of marks does not change

M; = M;_4, R, <R;_{+D(n)+1—|H.rootlist|
b, <P, +D(n)+1—|H.rootlist|

Amortized Time:
a; =t; + (I)i — (I)i—l < ZD(n) +1

Algorithm Theory, WS 2016/17 Fabian Kuhn 18

Amortized Time of Decrease-Key

UNI
f

FREIBURG

Assume that operation i is a decrease-key operation at node u:
Actual time: t; < length of path to next unmarked ancestor v

Potential function ® = R 4+ 2M:
* Assume, node u and nodes uq, ..., U, are moved to root list

— U4, ..., U, are marked and moved to root list, v. mark is set to true

Algorithm Theory, WS 2016/17 Fabian Kuhn 19

Amortized Time of Decrease-Key

UNI
FREIBURG

Assume that operation i is a decrease-key operation at node u:
Actual time: t; < length of path to next unmarked ancestor v

Potential function ® = R 4+ 2M:
* Assume, node u and nodes uq, ..., U, are moved to root list

— U4, ..., U, are marked and moved to root list, v. mark is set to true
> k marked nodes go to root list, < 1 node gets newly marked
* Rgrowsby<k+ 1, M grows by 1 and is decreased by = k

Ri<R,_,+k+1 M;<M;,_,+1—k
D, <D, +k+1)-2k-1)=d;_, +3—k

Amortized time:
ai:ti‘l‘(pi—q)i_lgk‘l‘l‘l‘g—k:‘l-

Algorithm Theory, WS 2016/17 Fabian Kuhn 20

Complexities Fibonacci Heap

|
FRE:BURG

UNI

* Initialize-Heap: 0(1)

* Is-Empty: 0(1)
* Insert: 0(1)
* Get-Min: 0(1)

* Delete-Min: 0(D(n)) .
(> amortized

* Decrease-Key: 0(1)

* Merge (heaps of size mand n, m < n): 0(1)

* How large can D(n) get?

Algorithm Theory, WS 2016/17 Fabian Kuhn 21

Rank of Children

UNI
f

FREIBURG

Lemma:

Consider a node v of rank k and let uq, ..., u; be the children of
v in the order in which they were linked to v. Then,

rank(u;) > i — 2.

Proof:

Algorithm Theory, WS 2016/17 Fabian Kuhn 22

Size of Trees

UNI
f

FREIBURG

Fibonacci Numbers:
F, =0, F;

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with

rank k is at least Fy, .

Proof:

1,

Vk > Z:Fk - Fk—l + Fk—Z

* Si: minimum size of the sub-tree of a node of rank k

Algorithm Theory, WS 2016/17

Fabian Kuhn

23

Size of Trees

UNI
f

FREIBURG

k-2
S, =2, Vk22:5k22+25i
=0

e Claim about Fibonacci numbers:

Algorithm Theory, WS 2016/17

k
Vk = O:Fk+2 — 1+2Fl
=0

Fabian Kuhn

24

Size of Trees

UNI

FREIBURG

k-2
SO = 1,51 = Z,Vk > Z:Sk = 2+ZSU
=0

* Claimoflemma: S, = Fj.»

Algorithm Theory, WS 2016/17 Fabian Kuhn

k
Ferz=1+) F,
=0

25

Size of Trees

UNI
f

FREIBURG

Lemma:
In a Fibonacci heap, the size of the sub-tree of a node v with rank k
is at least Fp, ..

Theorem:
The maximum rank of a node in a Fibonacci heap of size n is at most

D(n) = 0(logn).
Proof:
* The Fibonacci numbers grow exponentially:

1 [(14+V5\ [1-+5
w2 ()

 ForD(n) = k, we needn = Fj,,, nodes.

k

Algorithm Theory, WS 2016/17 Fabian Kuhn 26

Summary: Binomial and Fibonacci Heaps

UNI

FREIBURG

initialize
insert
get-min
delete-min
decrease-key
merge

is-empty

Algorithm Theory, WS 2016/17

Binary Heap
0(1)
O(logn)
0o(1)
O(logn)
O(log n)
O(m-logn)
0o(1)

Fabian Kuhn

Fibonacci Heap
0(1)
0(1)
0(1)

O(logn) *
0(1)*
0(1)
0(1)

*

amortized time

27

Minimum Spanning Trees

UNI
f

FREIBURG

Prim Algorithm:

Start with any node v (v is the initial component)

2. In each step:
Grow the current component by adding the minimum weight
edge e connecting the current component with any other node

Kruskal Algorithm:

1. Start with an empty edge set

2. In each step:
Add minimum weight edge e such that e does not close a cycle

Algorithm Theory, WS 2016/17 Fabian Kuhn 28

Implementation of Prim Algorithm

UNI
f

FREIBURG

Start at node s, very similar to Dijkstra’s algorithm:

1. Initialize d(s) = 0andd(v) = o forallv # s
2. All nodes s = v are unmarked

3. Get unmarked node u which minimizes d(u):

4. Foralle = {u,v} € E, d(v) = min{d(v),w(e)}

5. mark node u

6. Until all nodes are marked

Algorithm Theory, WS 2016/17 Fabian Kuhn

29

Implementation of Prim Algorithm

UNI

FREIBURG

Implementation with Fibonacci heap:
* Analysis identical to the analysis of Dijkstra’s algorithm:

O (n) insert and delete-min operations

O (m) decrease-key operations

* Runningtime: O(m + nlogn)

Algorithm Theory, WS 2016/17 Fabian Kuhn

30

Kruskal Algorithm

UNI
f

FREIBURG

1 - - 1. Start with an
empty edge set

. ®
2. In each step:
14 Add minimum
weight edge e
7 2 such that e does

28
16 31 ‘ not close a cycle

17 19

12
20

Algorithm Theory, WS 2016/17 Fabian Kuhn 31

Implementation of Kruskal Algorithm

1. Go through edges in order of increasing weights

2. For each edge e:

if e does not close a cycle then

add e to the current solution

Algorithm Theory, WS 2016/17 Fabian Kuhn

UNI
f

FREIBURG

Union-Find Data Structure

UNI

FREIBURG

Also known as Disjoint-Set Data Structure...

Manages partition of a set of elements
* set of disjoint sets

Operations:

 make_set(x): create a new set that only contains element x

* find(x): return the set containing x

* union(x,y): merge the two sets containing x and y

Algorithm Theory, WS 2016/17 Fabian Kuhn

33

Implementation of Kruskal Algorithm

UNI
f

FREIBURG

1. [Initialization:
For each node v: make_set(v)

2. Go through edges in order of increasing weights:
Sort edges by edge weight

3. Foreachedge e = {u, v}:
if find(u) # find(v) then
add e to the current solution

union(u, v)

Algorithm Theory, WS 2016/17 Fabian Kuhn

34

