

Chapter 5 Data Structures

Algorithm Theory WS 2016/17

Fabian Kuhn

Priority Queue / Heap

- Stores (key,data) pairs (like dictionary)
- But, different set of operations:
- Initialize-Heap: creates new empty heap
- Is-Empty: returns true if heap is empty
- Insert(key,data): inserts (key,data)-pair, returns pointer to entry
- Get-Min: returns (key,data)-pair with minimum key
- **Delete-Min**: deletes minimum (*key,data*)-pair
- Decrease-Key(entry,newkey): decreases key of entry to newkey
- Merge: merges two heaps into one

Figure: Cormen et al., Introduction to Algorithms

Simple (Lazy) Operations

Initialize-Heap *H*:

• H.rootlist := H.min := null

Merge heaps H and H':

- concatenate root lists
- update H. min

Insert element *e* into *H*:

- create new one-node tree containing e → H'
 - mark of root node is set to false
- merge heaps H and H'

Get minimum element of *H*:

return H. min

Operation Delete-Min

Delete the node with minimum key from H and return its element:

- 1. $m \coloneqq H.min$;
- 2. if H.size > 0 then
- 3. remove H.min from H.rootlist;
- 4. add H. min. child (list) to H. rootlist & Remove warks of
- 5. H.Consolidate();
 - // Repeatedly merge nodes with equal degree in the root list
 - // until degrees of nodes in the root list are distinct.
 - // Determine the element with minimum key
- 6. return m

Rank and Maximum Degree

Ranks of nodes, trees, heap:

Node v:

• rank(v): degree of v (number of children of v)

Tree T:

• rank(T): rank (degree) of root node of T

Heap H:

• rank(H): maximum degree (#children) of any node in H

Assumption (n: number of nodes in H):

$$rank(H) \leq D(n)$$

- for a known function D(n)

Consolidation of Root List

Array \underline{A} pointing to find roots with the same rank:

Consolidate:

- for i := 0 to D(n) do A[i] := null;
- while $H.rootlist \neq null do$
- T := "delete and return first element of/H. rootlist" 3.

Time:

O(|H.rootlist|+D(n))

- while $A[rank(T)] \neq \text{null do}$ 4.
- T' := A[rank(T)];5.
- A[rank(T)] := null;6.
- T := link(T, T')7.
- A[rank(T)] := T8.
- Create new H. rootlist and H. min 9.

Operation Decrease-Key

Decrease-Key(v, x): (decrease key of node v to new value x)

- 1. if $x \ge v$. key then return;
- 2. v.key := x; update H.min;
- 3. **if** $v \in H$.rootlist $\lor x \ge v$.parent.key then return
- 4. repeat
- 5. parent = v.parent;
- 6. H.cut(v);
- 7. v = parent;
- 8. until $\neg (v.mark) \lor v \in H.rootlist;$
- 9. if $v \notin H.rootlist$ then v.mark := true;

Fibonacci Heap Marks

History of a node v:

v is being linked to a node

v.mark = false

a child of v is cut

v.mark := true

a second child of v is cut

H.cut(v);v.mark := false

- Hence, the boolean value v.mark indicates whether node v has lost a child since the last time v was made the child of another node.
- Nodes v in the root list always have v. mark = false

Cost of Delete-Min & Decrease-Key

Delete-Min:

- 1. Delete min. root r and add r. child to H. rootlist time: O(1) (O(D(n))) time to set walks to fake)
 - 2. Consolidate H.rootlist time: O(length of H.rootlist + D(n))
 - Step 2 can potentially be linear in n (size of H)

Decrease-Key (at node v):

- 1. If new key < parent key, cut sub-tree of node v time: O(1)
- Cascading cuts up the tree as long as nodes are marked time: O(number of consecutive marked nodes)
- Step 2 can potentially be linear in n

Exercises: Both operations can take $\Theta(n)$ time in the worst case!

Fibonacci Heaps Complexity

- Worst-case cost of a single delete-min or decrease-key operation is $\Omega(n)$
- Can we prove a small worst-case amortized cost for delete-min and decrease-key operations?

Recall:

- Data structure that allows operations Q_1, \dots, Q_k
- We say that operation O_p has amortized cost a_p if for every execution the total time is

$$T \leq \sum_{p=1}^{k} n_p \cdot a_p,$$

where n_p is the number of operations of type O_p

Amortized Cost of Fibonacci Heaps

- Initialize-heap, is-empty, get-min, insert, and merge have worst-case cost O(1)
- Delete-min has amortized cost $O(\log n)$
- Decrease-key has amortized cost O(1)
- Starting with an empty heap, any sequence of n operations with at most n_d delete-min operations has total cost (time)

$$T = O(n + n_d \log n)$$
. # delete-min

We will now need the marks...

• Cost for Dijkstra: $O(|E| + |V| \log |V|)$

Fibonacci Heaps: Marks

Cycle of a node:

1. Node v is removed from root list and linked to a node

v.mark = false

2. Child node u of v is cut and added to root list

v.mark := true

3. Second child of v is cut

node v is cut as well and moved to root list v.mark := false

The boolean value v. mark indicates whether node v has lost a child since the last time v was made the child of another node.

Potential Function

$$b = R + M$$

(D.S)

System state characterized by two parameters:

- R: number of trees (length of H.rootlist)
- M: number of marked nodes (not in the root list)

Potential function:

$$\Phi \coloneqq R + 2M$$

Example:

• $R = 7, M = 2 \rightarrow \Phi = 11$

Actual Time of Operations

• Operations: initialize-heap, is-empty, insert, get-min, merge

actual time: O(1)

Normalize unit time such that

$$t_{init}, t_{is-empty}, t_{insert}, t_{get-min}, t_{merge} \leq 1$$

- Operation delete-min:
 - Actual time: O(length of H.rootlist + D(n))
 - Normalize unit time such that

$$t_{del-min} \le D(n) + \text{length of } H.rootlist$$

- Operation descrease-key:
 - Actual time: O(length of path to next unmarked ancestor)
 - Normalize unit time such that

 $t_{decr-key} \leq \text{length of path to next unmarked ancestor}$

Amortized Times

Assume operation i is of type:

initialize-heap:

- actual time: $t_i \le 1$, potential: $\Phi_{i-1} = \Phi_i = 0$
- amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \le 1$

is-empty, get-min:

- actual time: $t_i \leq 1$, potential: $\Phi_i = \Phi_{i-1}$ (heap doesn't change)
- amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \le 1$

merge:

- − Actual time: $t_i \le 1$
- combined potential of both heaps: $\Phi_i = \Phi_{i-1}$
- amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \le 1$

Amortized Time of Insert

Assume that operation i is an *insert* operation:

• Actual time: $t_i \leq 1$

Potential function:

- M remains unchanged (no nodes are marked or unmarked, no marked nodes are moved to the root list)
- R grows by 1 (one element is added to the root list)

$$\underbrace{\frac{M_i = M_{i-1}}{\Phi_i = \Phi_{i-1} + 1}}_{P_i = \Phi_{i-1} + 1} \underbrace{\frac{R_i}{R_{i-1} + 1}}_{P_i = \Phi_{i-1} + 1}$$

Amortized time:

$$a_i = t_i + \Phi_i - \Phi_{i-1} \leq 2$$

Amortized Time of Delete-Min

Assume that operation i is a *delete-min* operation:

Actual time: $t_i \leq D(n) + |H.rootlist|$

Potential function $\Phi = R + 2M$:

- \underline{R} : changes from |H.rootlist| to at most D(n)+1
- *M*: (# of marked nodes)

$$R_{i-1} = |H_{i-1}|$$

Number of marks does not charge

$$\mathcal{L}_i \leq \mathcal{D}(\omega) + 1$$

$$M_i \leq M_{i-1}, \quad R_i \leq R_{i-1} + D(n) + 1 - |\underline{H.rootlist}|$$

 $\Phi_i \leq \Phi_{i-1} + \underline{D(n) + 1 - |H.rootlist|}$

Amortized Time:

$$\underline{a_i} = \underline{t_i} + \Phi_i - \Phi_{i-1} \leq \underline{2D(n) + 1} = \mathcal{O}(\mathcal{D}_{(n)})$$

Amortized Time of Decrease-Key

Assume that operation i is a decrease-key operation at node u:

Actual time: $t_i \leq \text{length of path to next unmarked ancestor } v$

Potential function $\Phi = R + 2M$:

- Assume, node u and nodes u_1, \dots, u_k are moved to root list
 - $-u_1, \dots, u_k$ are marked and moved to root list, v. mark is set to true

Amortized Time of Decrease-Key

Assume that operation i is a decrease-key operation at node u:

Actual time: $t_i \leq \text{length of path to next unmarked ancestor } v$

Potential function $\Phi = R + 2M$:

- Assume, node u and nodes $u_1, ..., u_k$ are moved to root list $-u_1, ..., u_k$ are marked and moved to root list, v mark is set to true
- $\geq k$ marked nodes go to root list, ≤ 1 node gets newly marked
- R grows by $\leq k + 1$, M grows by 1 and is decreased by $\geq k$

$$R_i \le R_{i-1} + \underline{k+1}, \qquad M_i \le M_{i-1} + 1 - k$$

 $\Phi_i \le \Phi_{i-1} + (k+1) - 2(k-1) = \Phi_{i-1} + \underline{3-k}$

Amortized time:

$$a_i = t_i + \Phi_i - \Phi_{i-1} \le k+1+3-k = 4 = \alpha$$

4+1

Complexities Fibonacci Heap

- Initialize-Heap: <u>0(1)</u>
- Is-Empty: **0**(1)
- Insert: **0**(1)
- Get-Min: O(1)
- Delete-Min: O(D(n))
- Decrease-Key: <u>0(1)</u>
- Merge (heaps of size m and $n, m \le n$): O(1)
- How large can D(n) get?

amortized

Rank of Children

Lemma:

Consider a node v of rank k and let u_1, \dots, u_k be the children of v in the order in which they were linked to v. Then,

$$rank(u_i) \geq i-2.$$

Proof:

rank when alling child 26-1 23 22 21 20

when u; was added
rank(u;) = i-1

0, 1,1,2,3,5,8,13,21

Fibonacci Numbers:

$$F_0 = 0$$
, F

$$F_1=1$$
,

$$F_0 = 0$$
, $F_1 = 1$, $\forall k \ge 2$: $F_k = F_{k-1} + F_{k-2}$

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with rank k is at least F_{k+2} .

Proof:

• S_k : minimum size of the sub-tree of a node of rank k

$$S_0 = 1$$
, $S_1 = 2$
 $k \ge 2$: $S_2 \ge 2 + \sum_{i=0}^{L-2} S_i$

$$S_0 = 1$$
, $S_1 = 2$, $\forall k \ge 2 : S_k \ge 2 + \sum_{i=0}^{k-2} S_i$

Claim about Fibonacci numbers:

$$\forall k \geq 0 : F_{k+2} = 1 + \sum_{i=0}^{k} F_i$$

$$\downarrow = 0 : \quad \exists_2 = 1 + \sum_{i=0}^{k} \exists_i = 1 + \exists_0 = 1$$

$$\frac{1}{k + 0} = \frac{1}{k + 1} =$$

$$S_0 = 1, S_1 = 2, \forall k \ge 2: S_k \ge 2 + \sum_{i=0}^{k-2} S_i, \qquad F_{k+2} = 1 + \sum_{i=0}^{k-2} S_i$$

• Claim of lemma: $S_k \ge F_{k+2}$

$$= 2 + \sum_{j=2}^{k} T_{j}$$

$$= 1 + \sum_{j=0}^{k} T_{j} = T_{k+2}$$

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with rank k is at least F_{k+2} .

Theorem:

The maximum rank of a node in a Fibonacci heap of size n is at most

$$D(n) = O(\log n)$$

Proof:

The Fibonacci numbers grow exponentially:

$$\underline{F_k} = \frac{1}{\sqrt{5}} \cdot \left(\left(\frac{1 + \sqrt{5}}{2} \right)^k - \left(\frac{1 - \sqrt{5}}{2} \right)^k \right)$$

• For $D(n) \ge k$, we need $n \ge F_{k+2}$ nodes.

Summary: Binomial and Fibonacci Heaps

	Binary Heap	Fibonacci Heap
initialize	O (1)	O (1)
insert	$O(\log n)$	○ 0 (1)
get-min	O (1)	O (1)
delete-min	$O(\log n)$ —	$\multimap O(\log n) * \times$
decrease-key	$O(\log n)$ —	• O(1) *
merge	$O(m \cdot \log n)$	→ 0 (1)
is-empty	0(1)	0(1)

Distolea in time: O(m + nlogn)

 * amortized time

Minimum Spanning Trees

Prim Algorithm:

- 1. Start with any node v (v is the initial component)
- 2. In each step: Grow the current component by adding the minimum weight edge e connecting the current component with any other node

Kruskal Algorithm:

- 1. Start with an empty edge set
- 2. In each step: Add minimum weight edge e such that e does not close a cycle

Implementation of Prim Algorithm

Start at node s, very similar to Dijkstra's algorithm:

- 1. Initialize d(s) = 0 and $d(v) = \infty$ for all $v \neq s$
- 2. All nodes $s \ge v$ are unmarked add all nodes to an empty principly queue (d(v): (eq))

3. Get unmarked node u which minimizes d(u):

For all
$$e = \{u, v\} \in E$$
, $d(v) = \min\{d(v), |w(e)\}$

potentially update $d(v)$ of neighbors: $decrease-teag$

5. mark node u

6. Until all nodes are marked

Implementation of Prim Algorithm

Implementation with Fibonacci heap:

Analysis identical to the analysis of Dijkstra's algorithm:

O(n) insert and delete-min operations

O(m) decrease-key operations

• Running time: $O(m + n \log n)$

Kruskal Algorithm

- 1. Start with an empty edge set
- 2. In each step:
 Add minimum
 weight edge e
 such that e does
 not close a cycle

Implementation of Kruskal Algorithm

$$log_{M} \leq 2 log_{M}$$
 $n-1 \leq M \leq {n \choose 2}$

1. Go through edges in order of increasing weights

2. For each edge e:

if e does not close a cycle then

need to check whether gu, v3 closes a angele

check whether u k v are in the same component

add e to the current solution

add zu, v}

need to merge comp. of uk V

Union-Find Data Structure

Also known as **Disjoint-Set Data Structure**...

Manages partition of a set of elements

set of disjoint sets

Operations:

- make_set(x): create a new set that only contains element x
- find(x): return the set containing x
- union(x, y): merge the two sets containing x and y

Implementation of Kruskal Algorithm

1. Initialization:

For each node v: make_set(v)

- 2. Go through edges in order of increasing weights: Sort edges by edge weight
- 3. For each edge $e = \{u, v\}$:

if
$$find(u) \neq find(v)$$
 then

add e to the current solution

union
$$(u, v)$$