
Chapter 5

Data Structures

Algorithm Theory
WS 2016/17

Fabian Kuhn

Algorithm Theory, WS 2016/17 Fabian Kuhn 2

Priority Queue / Heap

• Stores (key,data) pairs (like dictionary)

• But, different set of operations:

• Initialize-Heap: creates new empty heap

• Is-Empty: returns true if heap is empty

• Insert(key,data): inserts (key,data)-pair, returns pointer to entry

• Get-Min: returns (key,data)-pair with minimum key

• Delete-Min: deletes minimum (key,data)-pair

• Decrease-Key(entry,newkey): decreases key of entry to newkey

• Merge: merges two heaps into one

Algorithm Theory, WS 2016/17 Fabian Kuhn 3

Fibonacci Heap

Figure: Cormen et al., Introduction to Algorithms

Algorithm Theory, WS 2016/17 Fabian Kuhn 4

Simple (Lazy) Operations

Initialize-Heap 𝐻:

• 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 ≔ 𝐻.𝑚𝑖𝑛 ≔ 𝑛𝑢𝑙𝑙

Merge heaps 𝐻 and 𝐻′:

• concatenate root lists

• update 𝐻.𝑚𝑖𝑛

Insert element 𝑒 into 𝐻:

• create new one-node tree containing 𝑒 H′
– mark of root node is set to 𝐟𝐚𝐥𝐬𝐞

• merge heaps 𝐻 and 𝐻′

Get minimum element of 𝐻:

• return 𝐻.𝑚𝑖𝑛

Algorithm Theory, WS 2016/17 Fabian Kuhn 5

Operation Delete-Min

Delete the node with minimum key from 𝐻 and return its element:

1. 𝑚 ≔ 𝐻.𝑚𝑖𝑛;

2. if 𝐻. 𝑠𝑖𝑧𝑒 > 0 then

3. remove 𝐻.𝑚𝑖𝑛 from 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡;

4. add 𝐻.𝑚𝑖𝑛. 𝑐ℎ𝑖𝑙𝑑 (list) to 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡

5. 𝑯.𝑪𝒐𝒏𝒔𝒐𝒍𝒊𝒅𝒂𝒕𝒆();

// Repeatedly merge nodes with equal degree in the root list
// until degrees of nodes in the root list are distinct.
// Determine the element with minimum key

6. return 𝑚

Algorithm Theory, WS 2016/17 Fabian Kuhn 6

Rank and Maximum Degree

Ranks of nodes, trees, heap:

Node 𝑣:

• 𝑟𝑎𝑛𝑘(𝑣): degree of 𝑣 (number of children of 𝑣)

Tree 𝑇:

• 𝑟𝑎𝑛𝑘 𝑇 : rank (degree) of root node of 𝑇

Heap 𝐻:

• 𝑟𝑎𝑛𝑘(𝐻): maximum degree (#children) of any node in 𝐻

Assumption (𝑛: number of nodes in 𝐻):

𝑟𝑎𝑛𝑘 𝐻 ≤ 𝐷(𝑛)

– for a known function 𝐷(𝑛)

Algorithm Theory, WS 2016/17 Fabian Kuhn 7

Consolidation of Root List

Array 𝐴 pointing to find roots with the same rank:

Consolidate:

1. for 𝑖 ≔ 0 to 𝐷(𝑛) do 𝐴 𝑖 ≔ null;

2. while 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 ≠ null do

3. 𝑇 ≔ “delete and return first element of 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡”

4. while 𝐴 𝑟𝑎𝑛𝑘 𝑇 ≠ null do

5. 𝑇′ ≔ 𝐴 𝑟𝑎𝑛𝑘 𝑇 ;

6. 𝐴 𝑟𝑎𝑛𝑘 𝑇 ≔ 𝑛𝑢𝑙𝑙;

7. 𝑇 ≔ 𝑙𝑖𝑛𝑘(𝑇, 𝑇′)

8. 𝐴 𝑟𝑎𝑛𝑘 𝑇 ≔ 𝑇

9. Create new 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 and 𝐻.𝑚𝑖𝑛

⋯
0 1 2 𝐷(𝑛)

Time:

𝑶(|𝑯. 𝒓𝒐𝒐𝒕𝒍𝒊𝒔𝒕 +𝑫 𝒏

Algorithm Theory, WS 2016/17 Fabian Kuhn 8

Operation Decrease-Key

Decrease-Key(𝒗, 𝒙): (decrease key of node 𝑣 to new value 𝑥)

1. if 𝑥 ≥ 𝑣. 𝑘𝑒𝑦 then return;

2. 𝑣. 𝑘𝑒𝑦 ≔ 𝑥; update 𝐻.𝑚𝑖𝑛;

3. if 𝑣 ∈ 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 ∨ 𝑥 ≥ 𝑣. 𝑝𝑎𝑟𝑒𝑛𝑡. 𝑘𝑒𝑦 then return

4. repeat

5. 𝑝𝑎𝑟𝑒𝑛𝑡 ≔ 𝑣. 𝑝𝑎𝑟𝑒𝑛𝑡;

6. 𝑯. 𝒄𝒖𝒕 𝒗 ;

7. 𝑣 ≔ 𝑝𝑎𝑟𝑒𝑛𝑡;

8. until ¬ 𝒗.𝒎𝒂𝒓𝒌 ∨ 𝑣 ∈ 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡;

9. if 𝑣 ∉ 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 then 𝒗.𝒎𝒂𝒓𝒌 ≔ 𝐭𝐫𝐮𝐞;

Algorithm Theory, WS 2016/17 Fabian Kuhn 9

Fibonacci Heap Marks

History of a node 𝒗:

𝑣 is being linked to a node 𝒗.𝒎𝒂𝒓𝒌 = 𝐟𝐚𝐥𝐬𝐞

a child of 𝑣 is cut 𝒗.𝒎𝒂𝒓𝒌 ≔ 𝐭𝐫𝐮𝐞

a second child of 𝑣 is cut 𝑯. 𝒄𝒖𝒕 𝒗 ;
𝒗.𝒎𝒂𝒓𝒌 ≔ 𝒇𝒂𝒍𝒔𝒆

• Hence, the boolean value 𝑣.𝑚𝑎𝑟𝑘 indicates whether node 𝑣 has
lost a child since the last time 𝑣 was made the child of another
node.

• Nodes 𝑣 in the root list always have 𝑣.𝑚𝑎𝑟𝑘 = false

Algorithm Theory, WS 2016/17 Fabian Kuhn 10

Cost of Delete-Min & Decrease-Key

Delete-Min:

1. Delete min. root 𝑟 and add 𝑟. 𝑐ℎ𝑖𝑙𝑑 to 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡
time: 𝑂 1

2. Consolidate 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡
time: 𝑂 length of 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 + 𝐷(𝑛)

• Step 2 can potentially be linear in 𝑛 (size of 𝐻)

Decrease-Key (at node 𝒗):

1. If new key < parent key, cut sub-tree of node 𝑣
time: 𝑂(1)

2. Cascading cuts up the tree as long as nodes are marked
time: 𝑂(number of consecutive marked nodes)

• Step 2 can potentially be linear in 𝑛

Exercises: Both operations can take 𝚯(𝒏) time in the worst case!

Algorithm Theory, WS 2016/17 Fabian Kuhn 11

Fibonacci Heaps Complexity

• Worst-case cost of a single delete-min or decrease-key
operation is Ω 𝑛

• Can we prove a small worst-case amortized cost for
delete-min and decrease-key operations?

Recall:

• Data structure that allows operations 𝑂1, … , 𝑂𝑘

• We say that operation 𝑂𝑝 has amortized cost 𝑎𝑝 if for every

execution the total time is

𝑇 ≤ ෍

𝑝=1

𝑘

𝑛𝑝 ⋅ 𝑎𝑝 ,

where 𝑛𝑝 is the number of operations of type 𝑂𝑝

Algorithm Theory, WS 2016/17 Fabian Kuhn 12

Amortized Cost of Fibonacci Heaps

• Initialize-heap, is-empty, get-min, insert, and merge
have worst-case cost 𝑶(𝟏)

• Delete-min has amortized cost 𝑶(𝐥𝐨𝐠𝒏)

• Decrease-key has amortized cost 𝑶(𝟏)

• Starting with an empty heap, any sequence of 𝑛 operations
with at most 𝑛𝑑 delete-min operations has total cost (time)

𝑻 = 𝑶 𝒏 + 𝒏𝒅 𝐥𝐨𝐠𝒏 .

• We will now need the marks…

• Cost for Dijkstra: 𝑂 |𝐸| + |𝑉| log |𝑉|

Algorithm Theory, WS 2016/17 Fabian Kuhn 13

Fibonacci Heaps: Marks

Cycle of a node:

1. Node 𝑣 is removed from root list and linked to a node
𝒗.𝒎𝒂𝒓𝒌 = 𝐟𝐚𝐥𝐬𝐞

2. Child node 𝑢 of 𝑣 is cut and added to root list
𝒗.𝒎𝒂𝒓𝒌 ≔ 𝐭𝐫𝐮𝐞

3. Second child of 𝑣 is cut
node 𝒗 is cut as well and moved to root list
𝒗.𝒎𝒂𝒓𝒌 ≔ 𝐟𝐚𝐥𝐬𝐞

The boolean value 𝑣.𝑚𝑎𝑟𝑘 indicates whether node 𝑣 has lost a
child since the last time 𝑣 was made the child of another node.

Algorithm Theory, WS 2016/17 Fabian Kuhn 14

Potential Function

System state characterized by two parameters:

• 𝑹: number of trees (length of 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡)

• 𝑴: number of marked nodes (not in the root list)

Potential function:
𝚽 ≔ 𝑹+ 𝟐𝑴

Example:

• 𝑅 = 7, 𝑀 = 2  Φ = 11

14 25

5

20 1222

918 2

8

171

13

15

3

71931

Algorithm Theory, WS 2016/17 Fabian Kuhn 15

Actual Time of Operations

• Operations: initialize-heap, is-empty, insert, get-min, merge

actual time: 𝑂(1)

– Normalize unit time such that

𝑡𝑖𝑛𝑖𝑡 , 𝑡𝑖𝑠−𝑒𝑚𝑝𝑡𝑦, 𝑡𝑖𝑛𝑠𝑒𝑟𝑡 , 𝑡𝑔𝑒𝑡−𝑚𝑖𝑛, 𝑡𝑚𝑒𝑟𝑔𝑒 ≤ 1

• Operation delete-min:

– Actual time: 𝑂 length of 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 + 𝐷 𝑛

– Normalize unit time such that

𝑡𝑑𝑒𝑙−𝑚𝑖𝑛 ≤ 𝐷 𝑛 + length of 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡

• Operation descrease-key:
– Actual time: 𝑂 length of path to next unmarked ancestor

– Normalize unit time such that

𝑡𝑑𝑒𝑐𝑟−𝑘𝑒𝑦 ≤ length of path to next unmarked ancestor

Algorithm Theory, WS 2016/17 Fabian Kuhn 16

Amortized Times

Assume operation 𝑖 is of type:

• initialize-heap:

– actual time: 𝑡𝑖 ≤ 1, potential: Φ𝑖−1 = Φ𝑖 = 0

– amortized time: 𝑎𝑖 = 𝑡𝑖 +Φ𝑖 −Φ𝑖−1 ≤ 1

• is-empty, get-min:

– actual time: 𝑡𝑖 ≤ 1, potential: Φ𝑖 = Φ𝑖−1 (heap doesn’t change)

– amortized time: 𝑎𝑖 = 𝑡𝑖 +Φ𝑖 −Φ𝑖−1 ≤ 1

• merge:

– Actual time: 𝑡𝑖 ≤ 1

– combined potential of both heaps: Φ𝑖 = Φ𝑖−1

– amortized time: 𝑎𝑖 = 𝑡𝑖 +Φ𝑖 −Φ𝑖−1 ≤ 1

Algorithm Theory, WS 2016/17 Fabian Kuhn 17

Amortized Time of Insert

Assume that operation 𝑖 is an insert operation:

• Actual time: 𝑡𝑖 ≤ 1

• Potential function:
– 𝑀 remains unchanged (no nodes are marked or unmarked, no marked

nodes are moved to the root list)

– 𝑅 grows by 1 (one element is added to the root list)

𝑀𝑖 = 𝑀𝑖−1, 𝑅𝑖 = 𝑅𝑖−1 + 1
Φ𝑖 = Φ𝑖−1 + 1

• Amortized time:

𝒂𝒊 = 𝒕𝒊 +𝚽𝒊 −𝚽𝒊−𝟏 ≤ 𝟐

Algorithm Theory, WS 2016/17 Fabian Kuhn 18

Amortized Time of Delete-Min

Assume that operation 𝑖 is a delete-min operation:

Actual time: 𝑡𝑖 ≤ 𝐷 𝑛 + 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡

Potential function 𝚽 = 𝑹+ 𝟐𝑴:

• 𝑅: changes from 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 to at most 𝐷 𝑛

• 𝑀: (# of marked nodes)
– Number of marks does not change

𝑀𝑖 = 𝑀𝑖−1, 𝑅𝑖 ≤ 𝑅𝑖−1 + 𝐷 𝑛 + 1 − 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡
Φ𝑖 ≤ Φ𝑖−1 + 𝐷 𝑛 + 1 − 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡

Amortized Time:
𝒂𝒊 = 𝒕𝒊 +𝚽𝒊 −𝚽𝒊−𝟏 ≤ 𝟐𝑫 𝒏 + 𝟏

Algorithm Theory, WS 2016/17 Fabian Kuhn 19

Amortized Time of Decrease-Key

Assume that operation 𝑖 is a decrease-key operation at node 𝑢:

Actual time: 𝑡𝑖 ≤ length of path to next unmarked ancestor 𝑣

Potential function 𝚽 = 𝑹+ 𝟐𝑴:

• Assume, node 𝑢 and nodes 𝑢1, … , 𝑢𝑘 are moved to root list
– 𝑢1, … , 𝑢𝑘 are marked and moved to root list, 𝑣.mark is set to true

Algorithm Theory, WS 2016/17 Fabian Kuhn 20

Amortized Time of Decrease-Key

Assume that operation 𝑖 is a decrease-key operation at node 𝑢:

Actual time: 𝑡𝑖 ≤ length of path to next unmarked ancestor 𝑣

Potential function 𝚽 = 𝑹+ 𝟐𝑴:

• Assume, node 𝑢 and nodes 𝑢1, … , 𝑢𝑘 are moved to root list
– 𝑢1, … , 𝑢𝑘 are marked and moved to root list, 𝑣.mark is set to true

• ≥ 𝑘 marked nodes go to root list, ≤ 1 node gets newly marked

• 𝑅 grows by ≤ 𝑘 + 1, 𝑀 grows by 1 and is decreased by ≥ 𝑘

𝑅𝑖 ≤ 𝑅𝑖−1 + 𝑘 + 1, 𝑀𝑖 ≤ 𝑀𝑖−1 + 1 − 𝑘
Φ𝑖 ≤ Φ𝑖−1 + 𝑘 + 1 − 2 𝑘 − 1 = Φ𝑖−1 + 3 − 𝑘

Amortized time:

𝒂𝒊 = 𝒕𝒊 +𝚽𝒊 −𝚽𝒊−𝟏 ≤ 𝒌 + 𝟏 + 𝟑 − 𝒌 = 𝟒

Algorithm Theory, WS 2016/17 Fabian Kuhn 21

Complexities Fibonacci Heap

• Initialize-Heap:

• Is-Empty:

• Insert:

• Get-Min:

• Delete-Min:

• Decrease-Key:

• Merge (heaps of size 𝑚 and 𝑛, 𝑚 ≤ 𝑛):

• How large can 𝑫(𝒏) get?

𝑶(𝟏)

𝑶(𝟏)

𝑶 𝟏

𝑶(𝟏)

𝑶 𝟏

𝑶 𝑫(𝒏)

𝑶 𝟏
amortized

Algorithm Theory, WS 2016/17 Fabian Kuhn 22

Rank of Children

Lemma:

Consider a node 𝑣 of rank 𝑘 and let 𝑢1, … , 𝑢𝑘 be the children of
𝑣 in the order in which they were linked to 𝑣. Then,

𝒓𝒂𝒏𝒌 𝒖𝒊 ≥ 𝒊 − 𝟐.

Proof:

Algorithm Theory, WS 2016/17 Fabian Kuhn 23

Size of Trees

Fibonacci Numbers:
𝐹0 = 0, 𝐹1 = 1, ∀𝑘 ≥ 2: 𝐹𝑘 = 𝐹𝑘−1 + 𝐹𝑘−2

Lemma:
In a Fibonacci heap, the size of the sub-tree of a node 𝑣 with
rank 𝑘 is at least 𝐹𝑘+2.

Proof:

• 𝑆𝑘: minimum size of the sub-tree of a node of rank 𝑘

Algorithm Theory, WS 2016/17 Fabian Kuhn 24

Size of Trees

𝑆0 = 1, 𝑆1 = 2, ∀𝑘 ≥ 2: 𝑆𝑘 ≥ 2 +෍

𝑖=0

𝑘−2

𝑆𝑖

• Claim about Fibonacci numbers:

∀𝑘 ≥ 0: 𝐹𝑘+2 = 1 +෍

𝑖=0

𝑘

𝐹𝑖

Algorithm Theory, WS 2016/17 Fabian Kuhn 25

Size of Trees

𝑆0 = 1, 𝑆1 = 2, ∀𝑘 ≥ 2: 𝑆𝑘 ≥ 2 +෍

𝑖=0

𝑘−2

𝑆𝑖 , 𝐹𝑘+2 = 1 +෍

𝑖=0

𝑘

𝐹𝑖

• Claim of lemma: 𝑆𝑘 ≥ 𝐹𝑘+2

Algorithm Theory, WS 2016/17 Fabian Kuhn 26

Size of Trees

Lemma:
In a Fibonacci heap, the size of the sub-tree of a node 𝑣 with rank 𝑘
is at least 𝐹𝑘+2.

Theorem:
The maximum rank of a node in a Fibonacci heap of size 𝑛 is at most

𝑫 𝒏 = 𝑶(𝐥𝐨𝐠𝒏) .

Proof:

• The Fibonacci numbers grow exponentially:

𝐹𝑘 =
1

5
⋅

1 + 5

2

𝑘

−
1 − 5

2

𝑘

• For 𝐷 𝑛 ≥ 𝑘, we need 𝑛 ≥ 𝐹𝑘+2 nodes.

Algorithm Theory, WS 2016/17 Fabian Kuhn 27

Summary: Binomial and Fibonacci Heaps

Binary Heap Fibonacci Heap

initialize 𝑶(𝟏) 𝑶(𝟏)

insert 𝑶(𝐥𝐨𝐠 𝒏) 𝑶(𝟏)

get-min 𝑶(𝟏) 𝑶(𝟏)

delete-min 𝑶(𝐥𝐨𝐠 𝒏) 𝑶(𝐥𝐨𝐠 𝒏) *

decrease-key 𝑶 𝐥𝐨𝐠 𝒏 𝑶(𝟏) *

merge 𝑶(𝒎 ⋅ 𝐥𝐨𝐠 𝒏) 𝑶(𝟏)

is-empty 𝑶(𝟏) 𝑶(𝟏)

∗ amortized time

Algorithm Theory, WS 2016/17 Fabian Kuhn 28

Minimum Spanning Trees

Prim Algorithm:

1. Start with any node 𝑣 (𝑣 is the initial component)

2. In each step:
Grow the current component by adding the minimum weight
edge 𝑒 connecting the current component with any other node

Kruskal Algorithm:

1. Start with an empty edge set

2. In each step:
Add minimum weight edge 𝑒 such that 𝑒 does not close a cycle

Algorithm Theory, WS 2016/17 Fabian Kuhn 29

Implementation of Prim Algorithm

Start at node 𝒔, very similar to Dijkstra’s algorithm:

1. Initialize 𝑑 𝑠 = 0 and 𝑑 𝑣 = ∞ for all 𝑣 ≠ 𝑠

2. All nodes 𝑠 ≥ 𝑣 are unmarked

3. Get unmarked node 𝑢 which minimizes 𝑑(𝑢):

4. For all 𝑒 = 𝑢, 𝑣 ∈ 𝐸, 𝑑 𝑣 = min 𝑑 𝑣 ,𝑤 𝑒

5. mark node 𝑢

6. Until all nodes are marked

Algorithm Theory, WS 2016/17 Fabian Kuhn 30

Implementation of Prim Algorithm

Implementation with Fibonacci heap:

• Analysis identical to the analysis of Dijkstra’s algorithm:

𝑂(𝑛) insert and delete-min operations

𝑂(𝑚) decrease-key operations

• Running time: 𝑶(𝒎+ 𝒏 𝐥𝐨𝐠𝒏)

Algorithm Theory, WS 2016/17 Fabian Kuhn 31

Kruskal Algorithm

3

14
4

6

1

10

13

23

21

31

8
25

20

1118

17

16

199

12

7 2
28

1. Start with an
empty edge set

2. In each step:
Add minimum
weight edge 𝑒
such that 𝑒 does
not close a cycle

Algorithm Theory, WS 2016/17 Fabian Kuhn 32

Implementation of Kruskal Algorithm

1. Go through edges in order of increasing weights

2. For each edge 𝑒:

if 𝒆 does not close a cycle then

add 𝒆 to the current solution

Algorithm Theory, WS 2016/17 Fabian Kuhn 33

Union-Find Data Structure

Also known as Disjoint-Set Data Structure…

Manages partition of a set of elements

• set of disjoint sets

Operations:

• 𝐦𝐚𝐤𝐞_𝐬𝐞𝐭(𝒙): create a new set that only contains element 𝑥

• 𝐟𝐢𝐧𝐝(𝒙): return the set containing 𝑥

• 𝐮𝐧𝐢𝐨𝐧(𝒙, 𝒚): merge the two sets containing 𝑥 and 𝑦

Algorithm Theory, WS 2016/17 Fabian Kuhn 34

Implementation of Kruskal Algorithm

1. Initialization:
For each node 𝑣: make_set(𝑣)

2. Go through edges in order of increasing weights:
Sort edges by edge weight

3. For each edge 𝑒 = {𝑢, 𝑣}:

if 𝐟𝐢𝐧𝐝 𝒖 ≠ 𝐟𝐢𝐧𝐝(𝒗) then

add 𝑒 to the current solution

𝐮𝐧𝐢𝐨𝐧(𝒖, 𝒗)

