Chapter 5
Data Structures

Algorithm Theory
WS 2016/17

Fabian Kuhn

UNI

FREIBURG



Priority Queue / Heap

UNI
FREIBURG

* Stores (key,data) pairs (like dictionary)

* But, different set of operations:

* Initialize-Heap: creates new empty heap
* Is-Empty: returns true if heap is empty
Insert(key,data): inserts (key,data)-pair, returns pointer to entry

Get-Min: returns (key,data)-pair with minimum key

Delete-Min: deletes minimum (key,data)-pair

Decrease-Key(entry,newkey): decreases key of entry to newkey

 Merge: merges two heaps into one
&/\/\

Algorithm Theory, WS 2016/17 Fabian Kuhn 2



Fibonacci Heap

m‘(‘(?d “9&5 Qre Mumol'(aa’

UNI

FREIBURG

Algorithm Theory, WS 2016/17

Figure: Cormen et al., Introduction to Algorithms

Fabian Kuhn



Simple (Lazy) Operations

UNI

FREIBURG

Initialize-Heap H.:
e H.rootlist := H.min := null

————

Merge heaps H and H':
e concatenate root lists
. updatelH. minj

Insert element e into H:

* create new one-node tree containing e 2> H’
— mark of root node is set to false

* merge heaps H and H'

Get minimum element of H:
e return H.min

Algorithm Theory, WS 2016/17 Fabian Kuhn



Operation Delete-Min

UNI
f

FREIBURG

Delete the node with minimum key from H and return its element:

A S

| %% o . x>
m := H.min; X fo {i

if H.size > 0 then

remove H.min from H.rootlist; de o,‘g‘
add H.min. child (list) to H.rootlist <— ‘:e:::()ve e
H.Consolidate();
VL/“ — e\

// Repeatedly merge nodes with equal degree in the root list
// until degrees of nodes in the root list are distinct.
// Determine the element with minimum key

\"&uL B-m.,os lm’ )

return m

Algorithm Theory, WS 2016/17 Fabian Kuhn 5



Rank and Maximum Degree

UNI
f

FREIBURG

Ranks of nodes, trees, heap:

Node v:

 rank(v): degree of v (number of children of v)
e ——

Tree T
 rank(T): rank (degree) of root node of T

Heap H:

* rank(H): maximum degree (#children) of any node in H
N\

Assumption (n: number of nodes in H):
rank(H) < D(n)

— for a known function D (n)

Algorithm Theory, WS 2016/17 Fabian Kuhn 6



Consolidation of Root List

|
FRE:BURG

UNI

Array A pointing to find roots with the same rank:

0O 1 2
Consolidate:

fori := 0to D(n) do Ali] := null;
while H.rootlist # null do

while A[rank(T)] # null do
T' = Alrank(T)];
Alrank(T)] := null;
T :=link(T,T")
Alrank(T)]| =T

L X N O Uk WWDNRE

Algorithm Theory, WS 2016/17 Fabian Kuhn

D(n)

Time:

Create new H.rootlist and H. min

O(|H.rootlist|+D(n))

T := “delete and return first element o%l. rootlist”

lzq/,-,q (ousaco(a}-e



Operation Decrease-Key

UNI
f

FREIBURG

Decrease-Key(v, x): (decrease key of node v to new value x)

if x = v. key then return;

v. key := x; update H.min;

if v € H.rootlist V x = v.parent. key then return
repeat s
parent := v.parent;

H.cut(v); Wi watk

v = parent;
until =(v.mark) vV v € H.rootlist;
if v € H.rootlist then v.mark := true; j

<IN
/ —

Algorithm Theory, WS 2016/17 Fabian Kuhn N

L X N O Uk WWDNRE



Fibonacci Heap Marks

UNI
FREIBURG

History of a node v:

v is being linked to a node

a child of v is cut

a second child of v is cut

v.mark = false

v.mark = true

H.cut(v);
v.mark = false

 Hence, the boolean value v. mark indicates whether node v has
lost a child since the last time v was made the child of another

node.

 Nodes v in the root list always have v.mark = false

Algorithm Theory, WS 2016/17 Fabian Kuhn



UNI

Cost of Delete-Min & Decrease-Key

FREIBURG

Delete-Min:

| 1. Delete min. root r and add r. child to H.rootlist
time: 0(1) ( OD) huwe +o set weatbs do fatie)

2. Consolidate H.rootlist
time: O(length of H.rootlist + D(n))

a— N

e Step 2 can potentially be linear in n (size of H)

Decrease-Key (at node v):
1. If new key < parent key, cut sub-tree of node v
time: 0(1)
2. Cascading cuts up the tree as long as nodes are marked
time: O (number of consecutive marked nodes)

e Step 2 can potentially be linearin n

Exercises: Both operations can take @(n) time in the worst case!

Algorithm Theory, WS 2016/17 Fabian Kuhn 10



UNI

Fibonacci Heaps Complexity

FREIBURG

* Worst-case cost of a single delete-min or decrease-key
operation is Q(n)

* Can we prove a small worst-case amortized cost for
delete-min and decrease-key operations?

Recall:
* Data structure that allows operations Oy, ..., Oy

* We say that operation 0, has amortized cost ap if for every
execution the total time is

where n,, is the number of operations of type 0,

Algorithm Theory, WS 2016/17 Fabian Kuhn 11



Amortized Cost of Fibonacci Heaps

(.

Initialize-heap, is-empty, get-min, insert, and merge
have worst-case cost 0(1)

* Delete-min has amortized cost O(logn)

* Decrease-key has amortized cost O(1)

* Starting with an empty heap, any sequence of n operations
with at most n; delete-min operations has total cost (time)

T =0(n+nglogn). e daloke-u
- -_—

* We will now need the marks... X el '\%‘VD

 Cost for Dijkstra: O(|E| + |V|log |V])

——

Algorithm Theory, WS 2016/17 Fabian Kuhn

UNI
f

FREIBURG



UNI

Fibonacci Heaps: Marks

FREIBURG

Cycle of a node:

1. Node v is removed from root list and linked to a node
v.mark = false

2. Child node u of v is cut and added to root list
v.mark := true

3. Second child of v is cut

node v is cut as well and moved to root list
v.mark = false

The boolean value v. mark indicates whether node v has lost a
child since the last time v was made the child of another node.

Algorithm Theory, WS 2016/17 Fabian Kuhn 13



UNI

Potential Function b=+ M

FREIBURG

QVASS)
System state characterized by two parameters:

* R:number of trees (length of H.rootlist)

* M: number of marked nodes (not in the root list)

Oi o= ti + bi. - cbc_,

Potential function: !
b =R+ 2111

Example:

b=
e R=7M=2 2> =11

Algorithm Theory, WS 2016/17 Fabian Kuhn 14



Actual Time of Operations

UNI

FREIBURG

* Operations: initialize-heap, is-empty, insert, get-min, merge

———,

actual time: 0(1)

— Normalize unit time such that

tinit: tis—empty: tinsert» tget—miru tmerge <1

* Operation delete-min:

— Actual time: 0(l§ngth of H.rootlist + D(n))

— Normalize unit time such that /O

tael—min < D(n) + length of H.rootlist (

e Operation descrease-key: ©

— Actual time: O(length of path to next unmarked ancestor)
— Normalize unit time such that

taecr—key < length of path to next unmarked ancestor

Algorithm Theory, WS 2016/17 Fabian Kuhn

15



Amortized Times

UNI

FREIBURG

Assume operation i is of type:

* initialize-heap:
— actualtime: t; < 1, potential: ®;_; = ®; =0
— amortized time: a; = t; + ¢; —P;_; <1

* is-empty, get-min:
— actual time: t; < 1, potential: ®; = ®;_; (heap doesn’t change)
— amortized time: a; = t; + ¢; —P;_1 <1

°* merge:
— Actual time: t; <1
— combined potential of both heaps: ®; = &;_4
— amortized time: a; = t; + ¢; —P;_1 <1

Algorithm Theory, WS 2016/17 Fabian Kuhn

16



Amortized Time of Insert

UNI
FREIBURG

Assume that operation i is an insert operation:
 Actualtime:¢; <1

 Potential function:

— M remains unchanged (no nodes are marked or unmarked, no marked
nodes are moved to the root list)

— R grows by 1 (one element is added to the root list)

Mi — Mi—l) Ri — Ri—l + 1
(Di — cDi—l + 1 =

e Amortized time:

Cli:ti+(l)i—(pi_1§2

pre——y

Algorithm Theory, WS 2016/17 Fabian Kuhn 17



Amortized Time of Delete-Min

UNI

Assume that operation i is a dglete-min operation:

C—
Actual time: ¢; < D(n) + |H.rootlist]| éég/d
A
Potential function ® = R + 2M:

* R:changes from |H.rootlist| to at most D(n) +|

 M: (# of marked nodes) . Ri, = M eatlst)

g reasR

— Number of marks does not chzége L, € Dea+l

M; =M;_y, R;i<Ri_;+D(n)+1—|H.rootlist]|
®; <®;_y +D(n) +1—|H.rootlist|

Amortized Time:
a; = ti + (I)i — (I)i—l < ZD(n) +1 = OC-D“’“)

Algorithm Theory, WS 2016/17 Fabian Kuhn 18

FREIBURG



Amortized Time of Decrease-Key

UNI
f

FREIBURG

Assume that operation i is a decrease-key operation at node u:
Actual time: t; < length of path to next unmarked ancestor v

Potential function ® = R 4+ 2M:
* Assume, node u and nodes uq, ..., U, are moved to root list

— U4, ..., U, are marked and moved to root list, v. mark is set to true

Y
Uy
Wy, "é.'( = \_/_il

Huwatls vwmoved = L
W 4‘-\‘\«40\‘&5 aJOLOd 3 l

W é HAeule = Lol
7
WO

Algorithm Theory, WS 2016/17 Fabian Kuhn 19



Amortized Time of Decrease-Key

UNI
FREIBURG

Assume that operation i is a decrease-key operation at node u:

Actual time: t; < length of path to next unmarked ancestor v
\,\

L —
Potential function ® = R + gM: fl

* Assume, node u and nodes uq, ..., U, are moved to root list

— U4, ..., U, are marked and moved to root list, v. mark is set to true

* > k marked nodes go to root list, < 1 node gets newly marked

* Rgrowsby<k+ 1, M grows by 1 and is decreased by = k

Ri<R_,+k+1 M;<M,_,+1—k
D, <D, +k+1)-2k—-1)=d;_, +3—k

e

Amortized time:
a,=t;+P;—D;, <k+1+3-k=4 =0O1)

Algorithm Theory, WS 2016/17 Fabian Kuhn 20



Complexities Fibonacci Heap

AN —

* Initialize-Heap: 0(1)

* Is-Empty: 0(1)
* Insert: 0(1)
* Get-Min: 0(1)

* Delete-Min:  0(D(n)) .
*—-=(‘> amortized

* Decrease-Key: 0(1)

* Merge (heaps of size mand n, m < n): 0(1)

* How large can D(n) get?

Algorithm Theory, WS 2016/17 Fabian Kuhn

|
FRE:BURG

UNI



Rank of Children

UNI
f

FREIBURG

Lemma:

Consider a node v of rank k and let uq, ..., u; be the children of
v in the order in which they were linked to v. Then,

rank(u;) > i — 2.

(Al('iz"l (4 was a/&d
ub \J q*au‘((u() 2

roule wlin «MM;; 2b4 23 22 2t 20
C\Ou\.
/X

Algorithm Theory, WS 2016/17 Fabian Kuhn 22

Proof:



Size of Trees

0/ ’I,/Z,g, ?/ g/’g, l‘

UNI
f

FREIBURG

/

\

Fibonacci Numbers:
F, =0, F;

—

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with

rank k is at least F, 5.

Proof:

1,

Vk > Z:Fk - Fk—l + Fk—Z

@ sa-e 7/’_

* Sk:minimum size of the sub-tree of a node of rank k

v
s / 13

AN
b ~ -
Vs [ o)
L2 243 2t 33)30

Algorithm Theory, WS 2016/17

N

So=

\

J

|, S=2

——

L-2
k=22- S& ?-2, + ESL
=0

(usiu(s ‘rzv. (QJM‘M"‘)

Fabian Kuhn

Li2
==

23



Size of Trees

UNI
FREIBURG

k-2
So=1 S, =2 Vk22:5k22+25i
=0

* Claim about Fibonacci numbers: /
k

Vk = O:Fk+2 — 1 +2Fl
M (tnd. 0w L) L=0

()
T A R P
=0
L T ET -1+ S
50 _T o+ T =T, 41+2F =1+ S5
- :E-n _\-k Rfi{ E-1 ¢ =0 1= 0 \/
4. =14 27

Algorithm Theory, WS 2016/17 Fabian Kuhn 24



Size of Trees

UNI
FREIBURG

k—2 K
SO=1,51=2,Vk22:Sk22+ZSi, Fk+2=1+ZFi
- w =0
* Claimoflemma: S, = Fj.»
\Wd. oa L - -
Wt S,z T, =1 S,z FH =2 v
skep: k22 (T#) k-2

: L-2
\ =0
&
=2+ 5%
r2

12
=1+ =7 =7,

=0

|

Algorithm Theory, WS 2016/17 Fabian Kuhn 25



Size of Trees

UNI
f

FREIBURG

Lemma:
In a Fibonacci heap, the size of the sub-tree of a node v with rank k
is at least Fp, ..

Theorem:
The maximum rank of a node in a Fibonacci heap of size n is at most

D(n) = 0(logn).

Proof:
* The Fibonacci numbers grow exponentially: /O

1 (/1445 [(1-v5)\"
s ((577) -(50)

 ForD(n) = k, we needn = Fj,,, nodes.

Algorithm Theory, WS 2016/17 Fabian Kuhn 26



UNI

Summary: Binomial and Fibonacci Heaps

FREIBURG

Binary Heap Fibonacci Heap

initialize 0(1) o(1)
insert O(log n) = 0(1) X
get-min o(1) 0o(1)
delete-min O(logn) — O(logn)*
decrease-key O(logn) ——= O0(1)*
merge Om-logn) - = 0(1)
is-empty 0(1) 0(1)

C hg s O)(was wlogw) ] ]
‘\‘)k}“ w dwe O L \ * amortized time

| S

g

Algorithm Theory, WS 2016/17 Fabian Kuhn 27



Minimum Spanning Trees

UNI
f

FREIBURG

_—0
Prim Algorithm: @ sl;’
1. Start with any node v (v is the initial component)
2. In each step:
Grow the current component by adding the minimum weight
edge e connecting the current component with any other node

rKruskal Algorithm:

1. Start with an empty edge set

2. In each step:

Add minimum weight edge e such that e does not close a cycle
— =

Algorithm Theory, WS 2016/17 Fabian Kuhn 28



Implementation of Prim Algorithm

UNI
f

FREIBURG

Start at node s, very similar to Dijkstra’s algorithm: “

1. Initialize dﬁsl =0andd(v) = forallv #s @’:2

A
2. Allnodes s = v are unmarked »)
add  dluls do as euply gausly quawe Ao ay)

‘<

3. Get unmarked node u which minimizes d(u):
a=

A\
?‘L'“""‘ di)+ wee)
- —

4.  Foralle ={u,v} € E,dw) = min{d(v), —ﬁ)ﬁ
Vohm%aﬂ? uvdmk vy "?( w}‘){q s+ Aac rec_((,.(:_q(a

5. mark node u

Aola R -wain

6. Until all nodes are marked

Algorithm Theory, WS 2016/17 Fabian Kuhn 29



Implementation of Prim Algorithm

UNI

FREIBURG

Implementation with Fibonacci heap:
* Analysis identical to the analysis of Dijkstra’s algorithm:

O (n) insert and delete-min operations

e

O (m) decrease-key operations

—_—

* Runningtime: O(m + nlogn)

Algorithm Theory, WS 2016/17 Fabian Kuhn

30



Kruskal Algorithm

UNI
f

FREIBURG

1 - - 1. Start with an
empty edge set

. ®
2. In each step:
14 Add minimum
weight edge e
7 2 such that e does

28
16 31 ‘ not close a cycle

17 19

12
20

Algorithm Theory, WS 2016/17 Fabian Kuhn 31



Implementation of Kruskal Algorithm

UNI

FREIBURG

%5... 2y Wi smg (3)
1. Go through edges in order of increasing weights

Seel edigs by weyld O w fogw) O

2. For each edge e:
§Z“/V3

if e does not close a cycle then
woed 4o chede whelbs Quvy dosesa G.Qc(z

L2
ek whells w & v are tw Yo sowe
Cdwr pousnt
add e to the current solution
0-40' 11“/ V;

Mﬂd’ﬂvacam@-ﬁ(“l(V

Algorithm Theory, WS 2016/17 Fabian Kuhn

32




Union-Find Data Structure

UNI

FREIBURG

Also known as Disjoint-Set Data Structure...

Manages partition of a set of elements
* set of disjoint sets

Operations:

 make_set(x): create a new set that only contains element x

* find(x): return the set containing x

* union(x,y): merge the two sets containing x and y

Algorithm Theory, WS 2016/17 Fabian Kuhn

33




Implementation of Kruskal Algorithm

UNI
f

FREIBURG

1. [Initialization:
For each node v: make_set(v)

—

2. Go through edges in order of increasing weights:
Sort edges by edge weight

3. Foreachedge e = {u, v}:

if firld(u) + find(v) then

add e to the current solution

union(u, v)

Algorithm Theory, WS 2016/17 Fabian Kuhn

34



