Chapter 6
Graph Algorithms

Algorithm Theory
WS 2015/16

Fabian Kuhn

UNI

FREIBURG

Example: Flow Network

UNI

FREIBURG

20

10

Algorithm Theory, WS 2015/16 Fabian Kuhn

10

20

Notation

UNI

FREIBURG

We define:
frwy= Y fl@, [fUm=) f(e)

e intov e out of v

ForasetS C V.

fin(g) == 2 fled, fOU(S) = Z f(e)

e into S e out of S

Flow conservation: Vv € V \ {s,t}: f(v) = f°"(v)
Flow value: || = f°Ut(s) = fI"(t)

For simplicity: Assume that all capacities are positive integers

Algorithm Theory, WS 2015/16 Fabian Kuhn

Maximum Flow: Greedy?

UNI
f

FREIBURG

Does greedy work?

A natural greedy algorithm:

* Aslong as possible, find an s-t-path with free capacity and
add as much flow as possible to the path

Algorithm Theory, WS 2015/16 Fabian Kuhn

UNI

Improving the Greedy Solution

FREIBURG

* Try to push 10 units of flow on edge (s, v)
* Too much incoming flow at v: reduce flow on edge (u, v)
e Add that flow on edge (u, t)

Algorithm Theory, WS 2015/16 Fabian Kuhn 5

UNI
f

FREIBURG

Residual Graph

Given a flow network G = (V, E') with capacities c, (for e € E)

For a flow f on G, define directed graph G = (Vf, Er) as follows:
* Nodesetly =V
* Foreachedgee = (u,v) in E, there are two edges in Ef:
— forward edge e = (u, v) with residual capacity ¢, — f (e)
— backward edge e’ = (v, u) with residual capacity f (e)

Algorithm Theory, WS 2015/16 Fabian Kuhn

Residual Graph: Example

UNI
f

FREIBURG

(@

15

10

@ o

15

Algorithm Theory, WS 2015/16 Fabian Kuhn 7

UNI

Residual Graph: Example

FREIBURG

Flow f

Algorithm Theory, WS 2015/16 Fabian Kuhn 8

Residual Graph: Example

UNI

FREIBURG

Residual Graph G

Algorithm Theory, WS 2015/16 Fabian Kuhn

UNI

Augmenting Path

FREIBURG

Residual Graph G

Algorithm Theory, WS 2015/16 Fabian Kuhn 10

UNI

Augmenting Path

FREIBURG

Augmenting Path

Algorithm Theory, WS 2015/16 Fabian Kuhn 11

Augmenting Path

UNI
f

FREIBURG

New Flow

@z

15

B i
10-10
15
e

5+10

Algorithm Theory, WS 2015/16 Fabian Kuhn 12

UNI

Augmenting Path

FREIBURG

Definition:
An augmenting path P is a (simple) s-t-path on the residual
graph G¢ on which each edge has residual capacity > 0.

bottleneck(P, f): minimum residual capacity on any edge of the
augmenting path P

Augment flow f to get flow f':
* For every forward edge (u,v) on P:

f'((w,v)) = f((u,v)) + bottleneck(P, f)

* For every backward edge (u,v) on P:

f'((ww) = f((v,w) — bottleneck(P, f)

Algorithm Theory, WS 2015/16 Fabian Kuhn 13

Augmented Flow

UNI

FREIBURG

Lemma: Given a flow f and an augmenting path P, the resulting
augmented flow f” is legal and its value is
If'| = |f| + bottleneck(P, f).

Proof:

Algorithm Theory, WS 2015/16 Fabian Kuhn 14

Augmented Flow

UNI

FREIBURG

Lemma: Given a flow f and an augmenting path P, the resulting
augmented flow f” is legal and its value is
If'| = |f| + bottleneck(P, f).

Proof:

Algorithm Theory, WS 2015/16 Fabian Kuhn 15

Ford-Fulkerson Algorithm

* Improve flow using an augmenting path as long as possible:

1. Initially, f(e) = Oforalledgese € E, Gr = G

2. while there is an augmenting s-t-path P in G¢ do
3 Let P be an augmenting s-t-path in G¢;

4. f' = augment(f, P);

5 update f to be f;

6 update the residual graph G

7

end;

Algorithm Theory, WS 2015/16 Fabian Kuhn

UNI
f

FREIBURG

Ford-Fulkerson Running Time

UNI
f

FREIBURG

Theorem: If all edge capacities are integers, the Ford-Fulkerson
algorithm terminates after at most C iterations, where

C = z Co .

e out of s
Proof:

Algorithm Theory, WS 2015/16 Fabian Kuhn 17

UNI

Ford-Fulkerson Running Time

FREIBURG

Theorem: If all edge capacities are integers, the Ford-Fulkerson
algorithm can be implemented to run in O (mC) time.

Proof:

Algorithm Theory, WS 2015/16 Fabian Kuhn 18

s-t Cuts

UNI
FREIBURG

Definition:
An s-t cut is a partition (4, B) of the vertex set such thats € A4

andt € B
@ 20
A » 20 Q

15 0 o 15 B

5 5 t
10

A =l

15

Algorithm Theory, WS 2015/16 Fabian Kuhn 19

UNI

Cut Capacity

FREIBURG

Definition:
The capacity c(A4, B) of an s-t-cut (4, B) is defined as

c(A,B) = z Ce.
@ 20 eoutof A

20
A u (v)

15
0 20 5 B

10

o o

15

Algorithm Theory, WS 2015/16 Fabian Kuhn 20

Cuts and Flow Value

UNI

FREIBURG

Lemma: Let f be any s-t flow, and (4, B) any s-t cut. Then,

f] = foU(4) — f"(A).

Proof:

Algorithm Theory, WS 2015/16 Fabian Kuhn 21

Cuts and Flow Value

UNI
f

FREIBURG

Lemma: Let f be any s-t flow, and (4, B) any s-t cut. Then,

f] = foU(4) — f"(A).

Lemma: Let f be any s-t flow, and (4, B) any s-t cut. Then,

fl = f™(B) — fo"(B).

Proof:

Algorithm Theory, WS 2015/16 Fabian Kuhn 22

Upper Bound on Flow Value

UNI

FREIBURG

Lemma:
Let f be any s-t flow and (4, B) any s-t cut. Then |f| < c(4, B).

Proof:

Algorithm Theory, WS 2015/16 Fabian Kuhn

23

Ford-Fulkerson Gives Optimal Solution .

FRE:BURG

UNI

Lemma: If f is an s-t flow such that there is no augmenting path
in G, then there is an s-t cut (A%, B") in G for which

|f| = c(4%, B¥).
Proof:

* Define A™: set of nodes that can be reached from s on a path
with positive residual capacities in G¢:

e ForB* =V \ A" (A%, B") isan s-t cut
— By definitions € A"andt & A"

Algorithm Theory, WS 2015/16 Fabian Kuhn 24

Ford-Fulkerson Gives Optimal Solution .

UNI
FREIBURG

Lemma: If f is an s-t flow such that there is no augmenting path
in G, then there is an s-t cut (A%, B") in G for which

|f| = c(4%, B¥).
Proof:

Algorithm Theory, WS 2015/16 Fabian Kuhn 25

Ford-Fulkerson Gives Optimal Solution .

UNI
FREIBURG

Lemma: If f is an s-t flow such that there is no augmenting path
in G, then there is an s-t cut (A%, B") in G for which

|f| = c(4%, B¥).
Proof:

Algorithm Theory, WS 2015/16 Fabian Kuhn 26

Ford-Fulkerson Gives Optimal Solution .

UNI
FREIBURG

Theorem: The flow returned by the Ford-Fulkerson algorithm is a
maximum flow.

Proof:

Algorithm Theory, WS 2015/16 Fabian Kuhn 27

UNI
f

FREIBURG

Min-Cut Algorithm

Ford-Fulkerson also gives a min-cut algorithm:

Theorem: Given a flow f of maximum value, we can compute an
s-t cut of minimum capacity in O(m) time.

Proof:

Algorithm Theory, WS 2015/16 Fabian Kuhn 28

Max-Flow Min-Cut Theorem

Theorem: (Max-Flow Min-Cut Theorem)

In every flow network, the maximum value of an s-t flow is
equal to the minimum capacity of an s-t cut.

Proof:

Algorithm Theory, WS 2015/16 Fabian Kuhn

UNI
f

FREIBURG

Integer Capacities

UNI
f

FREIBURG

Theorem: (Integer-Valued Flows)

If all capacities in the flow network are integers, then there is a

maximum flow f for which the flow f(e) of every edge e is an
integer.

Proof:

Algorithm Theory, WS 2015/16 Fabian Kuhn 30

Non-Integer Capacities

UNI
FREIBURG

What if capacities are not integers?

* rational capacities:
— can be turned into integers by multiplying them with large enough integer
— algorithm still works correctly

* real (non-rational) capacities:

— not clear whether the algorithm always terminates

* even for integer capacities, time can linearly depend on the value
of the maximum flow

Algorithm Theory, WS 2015/16 Fabian Kuhn 31

Slow Execution

UNI

FREIBURG

 Number of iterations: 2000 (value of max. flow)

Algorithm Theory, WS 2015/16 Fabian Kuhn

32

UNI

Improved Algorithm

FREIBURG

Idea: Find the best augmenting path in each step
* best: path P with maximum bottleneck(P, f)

* Best path might be rather expensive to find
- find almost best path

e Scaling parameter A:
(initially, A = "max c, rounded down to next power of 2")

* Aslong as there is an augmenting path that improves the flow by
at least A, augment using such a path

e If there is no such path: A := 4/,

Algorithm Theory, WS 2015/16 Fabian Kuhn 33

UNI

Scaling Parameter Analysis

FREIBURG

Lemma: If all capacities are integers, number of different scaling
parameters used is < 1 + |log, C|.

* A-scaling phase: Time during which scaling parameter is A

Algorithm Theory, WS 2015/16 Fabian Kuhn 34

Length of a Scaling Phase

Lemma: If f is the flow at the end of the A-scaling phase, the
maximum flow in the network has value at most |f| + mA.

Algorithm Theory, WS 2015/16 Fabian Kuhn

UNI
f

FREIBURG

Length of a Scaling Phase

UNI

FREIBURG

Lemma: The number of augmentation in each scaling phase is at
most 2m.

Algorithm Theory, WS 2015/16 Fabian Kuhn 36

UNI

Running Time: Scaling Max Flow Alg.

FREIBURG

Theorem: The number of augmentations of the algorithm with
scaling parameter and integer capacities is at most O(m log C). The
algorithm can be implemented in time 0 (m? log C).

Algorithm Theory, WS 2015/16 Fabian Kuhn 37

UNI

Strongly Polynomial Algorithm

FREIBURG

* Time of regular Ford-Fulkerson algorithm with integer capacities:
O(mcC)

* Time of algorithm with scaling parameter:
0(m?log C)

* O(log() is polynomial in the size of the input, but notinn
 Can we get an algorithm that runs in time polynomial in n?

* Always picking a shortest augmenting path leads to running time
0(m®n)

Algorithm Theory, WS 2015/16 Fabian Kuhn 38

Other Algorithms

UNI

FREIBURG

* There are many other algorithms to solve the maximum flow
problem, for example:

* Preflow-push algorithm:
— Maintains a preflow (V nodes: inflow > outflow)
— Alg. guarantees: As soon as we have a flow, it is optimal
— Detailed discussion in last year’s lecture
— Running time of basic algorithm: O0(m - n?)
— Doing steps in the “right” order: 0(n3)

e Current best known complexity: O(m - n)

— For graphs with m > nl*€ [King,Rao,Tarjan 1992/1994]

(for every constant € > 0)

— For sparse graphs with m < n16/15-6 [Orlin, 2013]

Algorithm Theory, WS 2015/16 Fabian Kuhn

39

Maximum Flow Applications

UNI
FREIBURG

 Maximum flow has many applications

 Reducing a problem to a max flow problem can even be seen as
an important algorithmic technique

* Examples:

related network flow problems

computation of small cuts

computation of matchings

computing disjoint paths

scheduling problems

assignment problems with some side constraints

Algorithm Theory, WS 2015/16 Fabian Kuhn 40

