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Example: Flow Network
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Notation

We define:

𝑓in 𝑣 ≔ ෍

𝑒 into 𝑣

𝑓 𝑒 , 𝑓out 𝑣 ≔ ෍

𝑒 out of 𝑣

𝑓(𝑒)

For a set 𝑺 ⊆ 𝑽:

𝑓in 𝑆 ≔ ෍

𝑒 into 𝑆

𝑓 𝑒 , 𝑓out 𝑆 ≔ ෍

𝑒 out of 𝑆

𝑓(𝑒)

Flow conservation: ∀𝑣 ∈ 𝑉 ∖ 𝑠, 𝑡 : 𝑓in 𝑣 = 𝑓out(𝑣)

Flow value: 𝑓 = 𝑓out 𝑠 = 𝑓in(𝑡)

For simplicity: Assume that all capacities are positive integers
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Maximum Flow: Greedy?

Does greedy work?

A natural greedy algorithm:

• As long as possible, find an 𝑠-𝑡-path with free capacity and 
add as much flow as possible to the path
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Improving the Greedy Solution

• Try to push 10 units of flow on edge (𝑠, 𝑣)

• Too much incoming flow at 𝑣: reduce flow on edge (𝑢, 𝑣)

• Add that flow on edge (𝑢, 𝑡)
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Residual Graph

Given a flow network 𝐺 = 𝑉, 𝐸 with capacities 𝑐𝑒 (for 𝑒 ∈ 𝐸)

For a flow 𝑓 on 𝐺, define directed graph 𝐺𝑓 = (𝑉𝑓 , 𝐸𝑓) as follows:

• Node set 𝑉𝑓 = 𝑉

• For each edge 𝑒 = (𝑢, 𝑣) in 𝐸, there are two edges in 𝐸𝑓:

– forward edge 𝑒 = (𝑢, 𝑣) with residual capacity 𝑐𝑒 − 𝑓(𝑒)

– backward edge 𝑒′ = (𝑣, 𝑢) with residual capacity 𝑓(𝑒)
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Residual Graph: Example
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Residual Graph: Example
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Residual Graph: Example

Residual Graph 𝑮𝒇
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Augmenting Path

Residual Graph 𝑮𝒇
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Augmenting Path

Augmenting Path
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Augmenting Path

New Flow
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Augmenting Path

Definition:
An augmenting path 𝑃 is a (simple) 𝑠-𝑡-path on the residual 
graph 𝐺𝑓 on which each edge has residual capacity > 0.

bottleneck(𝑃, 𝑓): minimum residual capacity on any edge of the
augmenting path 𝑃

Augment flow 𝒇 to get flow 𝒇′:

• For every forward edge (𝑢, 𝑣) on 𝑃: 

𝒇′ 𝒖, 𝒗 ≔ 𝒇 𝒖, 𝒗 + 𝐛𝐨𝐭𝐭𝐥𝐞𝐧𝐞𝐜𝐤 𝑷, 𝒇

• For every backward edge (𝑢, 𝑣) on 𝑃:

𝒇′ 𝒗, 𝒖 ≔ 𝒇 𝒗, 𝒖 − 𝐛𝐨𝐭𝐭𝐥𝐞𝐧𝐞𝐜𝐤(𝑷, 𝒇)
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Augmented Flow

Lemma: Given a flow 𝑓 and an augmenting path 𝑃, the resulting 
augmented flow 𝑓′ is legal and its value is

𝒇′ = 𝒇 + 𝐛𝐨𝐭𝐭𝐥𝐞𝐧𝐞𝐜𝐤 𝑷, 𝒇 .

Proof:
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Augmented Flow

Lemma: Given a flow 𝑓 and an augmenting path 𝑃, the resulting 
augmented flow 𝑓′ is legal and its value is

𝒇′ = 𝒇 + 𝐛𝐨𝐭𝐭𝐥𝐞𝐧𝐞𝐜𝐤 𝑷, 𝒇 .

Proof:
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Ford-Fulkerson Algorithm

• Improve flow using an augmenting path as long as possible: 

1. Initially, 𝑓 𝑒 = 0 for all edges 𝑒 ∈ 𝐸, 𝐺𝑓 = 𝐺

2. while there is an augmenting 𝑠-𝑡-path 𝑃 in 𝐺𝑓 do

3. Let 𝑃 be an augmenting 𝑠-𝑡-path in 𝐺𝑓;

4. 𝑓′ ≔ augment(𝑓, 𝑃);

5. update 𝑓 to be 𝑓′;

6. update the residual graph 𝐺𝑓

7. end;
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Ford-Fulkerson Running Time

Theorem: If all edge capacities are integers, the Ford-Fulkerson 
algorithm terminates after at most 𝐶 iterations, where

𝐶 = ෍

𝑒 out of 𝑠

𝑐𝑒 .

Proof:
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Ford-Fulkerson Running Time

Theorem: If all edge capacities are integers, the Ford-Fulkerson 
algorithm can be implemented to run in 𝑂(𝑚𝐶) time.

Proof:
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𝑠-𝑡 Cuts

Definition:
An 𝑠-𝑡 cut is a partition (𝐴, 𝐵) of the vertex set such that 𝑠 ∈ 𝐴
and 𝑡 ∈ 𝐵
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Cut Capacity

Definition:
The capacity 𝑐 𝐴, 𝐵 of an 𝑠-𝑡-cut (𝐴, 𝐵) is defined as

𝒄 𝑨,𝑩 ≔ ෍

𝒆 𝐨𝐮𝐭 𝐨𝐟 𝑨

𝒄𝒆 .
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Cuts and Flow Value

Lemma: Let 𝑓 be any 𝑠-𝑡 flow, and (𝐴, 𝐵) any 𝑠-𝑡 cut. Then,

𝒇 = 𝒇𝐨𝐮𝐭 𝑨 − 𝒇𝐢𝐧 𝑨 .

Proof:
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Cuts and Flow Value

Lemma: Let 𝑓 be any 𝑠-𝑡 flow, and (𝐴, 𝐵) any 𝑠-𝑡 cut. Then,

𝒇 = 𝒇𝐨𝐮𝐭 𝑨 − 𝒇𝐢𝐧 𝑨 .

Lemma: Let 𝑓 be any 𝑠-𝑡 flow, and (𝐴, 𝐵) any 𝑠-𝑡 cut. Then,

𝒇 = 𝒇𝐢𝐧 𝑩 − 𝒇𝐨𝐮𝐭 𝑩 .

Proof:
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Upper Bound on Flow Value

Lemma:

Let 𝑓 be any 𝑠-𝑡 flow and (𝐴, 𝐵) any 𝑠-𝑡 cut. Then 𝒇 ≤ 𝒄(𝑨,𝑩).

Proof:
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Ford-Fulkerson Gives Optimal Solution

Lemma: If 𝑓 is an 𝑠-𝑡 flow such that there is no augmenting path 
in 𝐺𝑓, then there is an 𝑠-𝑡 cut (𝐴∗, 𝐵∗) in 𝐺 for which

𝒇 = 𝒄 𝑨∗, 𝑩∗ .

Proof:

• Define 𝑨∗: set of nodes that can be reached from 𝑠 on a path 
with positive residual capacities in 𝐺𝑓:

• For 𝐵∗ = 𝑉 ∖ 𝐴∗, (𝐴∗, 𝐵∗) is an 𝑠-𝑡 cut
– By definition 𝑠 ∈ 𝐴∗ and 𝑡 ∉ 𝐴∗
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Ford-Fulkerson Gives Optimal Solution

Lemma: If 𝑓 is an 𝑠-𝑡 flow such that there is no augmenting path 
in 𝐺𝑓, then there is an 𝑠-𝑡 cut (𝐴∗, 𝐵∗) in 𝐺 for which

𝒇 = 𝒄 𝑨∗, 𝑩∗ .

Proof:
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Ford-Fulkerson Gives Optimal Solution

Lemma: If 𝑓 is an 𝑠-𝑡 flow such that there is no augmenting path 
in 𝐺𝑓, then there is an 𝑠-𝑡 cut (𝐴∗, 𝐵∗) in 𝐺 for which

𝒇 = 𝒄 𝑨∗, 𝑩∗ .

Proof:
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Ford-Fulkerson Gives Optimal Solution

Theorem: The flow returned by the Ford-Fulkerson algorithm is a 
maximum flow.

Proof:
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Min-Cut Algorithm

Ford-Fulkerson also gives a min-cut algorithm:

Theorem: Given a flow 𝑓 of maximum value, we can compute an 
𝑠-𝑡 cut of minimum capacity in 𝑂(𝑚) time.

Proof:
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Max-Flow Min-Cut Theorem

Theorem: (Max-Flow Min-Cut Theorem)

In every flow network, the maximum value of an 𝑠-𝑡 flow is 
equal to the minimum capacity of an 𝑠-𝑡 cut.

Proof:
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Integer Capacities

Theorem: (Integer-Valued Flows)

If all capacities in the flow network are integers, then there is a 
maximum flow 𝑓 for which the flow 𝑓 𝑒 of every edge 𝑒 is an 
integer.

Proof:
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Non-Integer Capacities

What if capacities are not integers?

• rational capacities:
– can be turned into integers by multiplying them with large enough integer

– algorithm still works correctly

• real (non-rational) capacities:
– not clear whether the algorithm always terminates

• even for integer capacities, time can linearly depend on the value 
of the maximum flow
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Slow Execution

• Number of iterations: 2000 (value of max. flow)
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Improved Algorithm

Idea: Find the best augmenting path in each step

• best: path 𝑃 with maximum bottleneck(𝑃, 𝑓)

• Best path might be rather expensive to find
 find almost best path

• Scaling parameter 𝚫: 
(initially, Δ = "max 𝑐𝑒 rounded down to next power of 2")

• As long as there is an augmenting path that improves the flow by 
at least Δ, augment using such a path

• If there is no such path: Δ ≔ ΤΔ 2



Algorithm Theory, WS 2015/16 Fabian Kuhn 34

Scaling Parameter Analysis

Lemma: If all capacities are integers, number of different scaling 
parameters used is ≤ 1 + ⌊log2 𝐶⌋.

• 𝚫-scaling phase: Time during which scaling parameter is Δ
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Length of a Scaling Phase

Lemma: If 𝑓 is the flow at the end of the Δ-scaling phase, the 
maximum flow in the network has value at most 𝑓 + 𝑚Δ.
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Length of a Scaling Phase

Lemma: The number of augmentation in each scaling phase is at 
most 2𝑚.



Algorithm Theory, WS 2015/16 Fabian Kuhn 37

Running Time: Scaling Max Flow Alg.

Theorem: The number of augmentations of the algorithm with 
scaling parameter and integer capacities is at most 𝑂(𝑚 log 𝐶). The 
algorithm can be implemented in time 𝑂 𝑚2 log 𝐶 .
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Strongly Polynomial Algorithm

• Time of regular Ford-Fulkerson algorithm with integer capacities:

𝑂(𝑚𝐶)

• Time of algorithm with scaling parameter:

𝑂 𝑚2log 𝐶

• 𝑂(log 𝐶) is polynomial in the size of the input, but not in 𝑛

• Can we get an algorithm that runs in time polynomial in 𝑛?

• Always picking a shortest augmenting path leads to running time

𝑂(𝑚2𝑛)
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Other Algorithms

• There are many other algorithms to solve the maximum flow 
problem, for example:

• Preflow-push algorithm:
– Maintains a preflow (∀ nodes: inflow ≥ outflow)

– Alg. guarantees: As soon as we have a flow, it is optimal

– Detailed discussion in last year’s lecture

– Running time of basic algorithm: 𝑂 𝑚 ⋅ 𝑛2

– Doing steps in the “right” order: 𝑂 𝑛3

• Current best known complexity: 𝑶 𝒎 ⋅ 𝒏
– For graphs with 𝑚 ≥ 𝑛1+𝜖 [King,Rao,Tarjan 1992/1994]

(for every constant 𝜖 > 0)

– For sparse graphs with 𝑚 ≤ 𝑛 Τ16 15−𝛿 [Orlin, 2013]
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Maximum Flow Applications

• Maximum flow has many applications

• Reducing a problem to a max flow problem can even be seen as 
an important algorithmic technique

• Examples:
– related network flow problems

– computation of small cuts

– computation of matchings

– computing disjoint paths

– scheduling problems

– assignment problems with some side constraints

– …


