Chapter 6
Graph Algorithms

Algorithm Theory
WS 2015/16

Fabian Kuhn

UNI

FREIBURG



Example: Flow Network

UNI

FREIBURG

Algorithm Theory, WS 2015/16 Fabian Kuhn




Notation 5% > ¢
We define:
frwy= Y f@, [fUm= ) f(e)

e intov e out of v

O = {ceﬁ < c,
ForasetS C V:

fin(g) == 2 fled,  fOU(S) = Z f(e)

e into S e out of S

Flow conservation: Vv € V \ {s,t}: f(v) = f°"(v)

Flow value: || = f°Ut(s) = fI"(t)

For simplicity: Assume that all capacities are positive integers

Algorithm Theory, WS 2015/16 Fabian Kuhn



Maximum Flow: Greedy?

UNI
f

FREIBURG

Does greedy work?

A natural greedy algorithm:

* Aslong as possible, find an s-t-path with free capacity and
add as much flow as possible to the path

Algorithm Theory, WS 2015/16 Fabian Kuhn



UNI

Improving the Greedy Solution

FREIBURG

* Try to push 10 units of flow on edge (s, v)
* Too much incoming flow at v: reduce flow on edge (u, v)
e Add that flow on edge (u, t)

Algorithm Theory, WS 2015/16 Fabian Kuhn 5



Residual Graph

UNI
f

FREIBURG

Given a flow network G = (V, E') with capacities c, (for e € E)

I —

For a flow f on G, define directed graph G = (Vf, Er) as follows:
* NodesetVy =V Nresiduel %“‘Pl‘

—_— =
* Foreachedgee = (u,v)in E, there are two edges in Ef:

— forward edge e = (u, v) with residual capacity ¢, — f (e)

— backward edge e’ = (v, u) with residual capacity f (e)

v goibdal‘of QJK V
.‘ sm “%

QQCLU\)OM QDQ%Q

gew. Qﬂsz: Cap = 1<
.LacL'U- Qtpf' cop= S

a0

Algorithm Theory, WS 2015/16 Fabian Kuhn 6



Residual Graph: Example

UNI
f

FREIBURG

(@

15

10

@ o

15

Algorithm Theory, WS 2015/16 Fabian Kuhn 7



UNI

Residual Graph: Example

FREIBURG

Flow f

Algorithm Theory, WS 2015/16 Fabian Kuhn 8



Residual Graph: Example

UNI

FREIBURG

Residual Graph G

Algorithm Theory, WS 2015/16 Fabian Kuhn




UNI

Augmenting Path

FREIBURG

Residual Graph G

Algorithm Theory, WS 2015/16 Fabian Kuhn 10



Augmenting Path

UNI
f

FREIBURG

Augmenting Path

Algorithm Theory, WS 2015/16 Fabian Kuhn 11



Augmenting Path

UNI
f

FREIBURG

New Flow

@z

15

B i
10-10
15
e

5+10

Algorithm Theory, WS 2015/16 Fabian Kuhn 12



UNI

Augmenting Path

FREIBURG

Definition:
An augmenting path P is a (simple) s-t-path on the residual
graph G¢ on which each edge has residual capacity > 0.

bottleneck(P, f): minimum residual capacity on any edge of the
= augmenting path P

Augment flow f to get flow f':
* For every forward edge (u,v) on P:

f'((w,v)) = f((u,v)) + bottleneck(P, f)
* For every backward edge (u,v) on P:

f'((ww) = f((@,w) - bottleneck(P, f)

Algorithm Theory, WS 2015/16 Fabian Kuhn 13



Augmented Flow

UNI
FREIBURG

Lemma: Given a flow f and an augmenting path P, the resulting
augmented flow Z’ is legal and its value is

— v
If'l = |f| + bottlefleck(P, .

_—

Proof: S /
M= bo‘{-l(QU\QCE (P; S/
12N =121+ (PR <

{3 lagal: XkeE®  O= f’m-"- Cle (T)
' NveVsdsts  fin=¢"w (@

Qank gugo“ 2y Dwd. adlg,e
7 . N
Ce - -
® °£(/1\4 U o acdual ecofze(u'q)
{
f'(q’\ :Q(Q)-* \ '“letuccctvt ) g(z) =_Q(eh — b
bs Ce- £(Q] L" < g(en

©C <= f(te\é <

< —

Algorithm Theory, WS 2015/16 Fabian Kuhn 14



Augmented Flow

UNI
f

FREIBURG

Lemma: Given a flow f and an augmenting path P, the resulting
augmented flow f” is legal and its value is
If'| = |f| + bottleneck(P, f).

Proof:

%ow CousS.

ud &?
R”A/"’% w7
+ o = = Lo
b
b.)oo. o LwJ_____;,
o"’dd \9.,#}’ »¢- 77

Algorithm Theory, WS 2015/16 Fabian Kuhn 15



‘Ford-Fulkerson Algorithm

UNI

FREIBURG

* Improve flow using an augmenting path as long as possible:

1. Initially, f(e) = Oforalledgese € E, Gr = G

while there is an augmenting s-t-path P in Gf do

2.

3 Letf be an augmenting s-t-path in Gf;

4 f' := augment(f, P); botHeweet (P, £) > o
5

6

7

update f to be f;
update the residual graph Gy

end;

Algorithm Theory, WS 2015/16 Fabian Kuhn

16



Ford-Fulkerson Running Time

Theorem: If all edge capacities are integers, the Ford-Fulkerson
algorithm terminates after at most C iterations, where

C
C= z Ce - ¢

e out of s s Pl

Proof:
Al ol «l-‘w_qg/ g»t eadle ect £(23 1S Gu '\u\es(u

.MSF\ AU,%: %(-Q\‘: (&)
Sln 8AAR ’tbl . a(L&lM, W ? : VQS\lOQan CQP. AT ‘lk\&ws

boﬁtwc%(\"?,&\ > (i oo ¥s an b))

Loz |

—o uew a??ow valugs e dule

—%W,?('ew\u(ua (myf ba)\

e

avary ows value = C

Algorithm Theory, WS 2015/16 Fabian Kuhn

UNI
f

FREIBURG



Ford-Fulkerson Running Time

UNI

FREIBURG

Theorem: If all edge capacities are integers, the Ford-Fulkerson
algorithm can be implemented to run in O (mcC) time.

T &
eo(’f
Proof: g | e(# 3 i\%
_— -~ . au A" & V2N VJ»_O\
Claia, ouz ('(‘Zl\ can 2 l }:el ter: O(w)

——————

<2. %W& Qu%\a\, ‘)\'\’e\ /COuc.(u&Q 'M;.,Qﬁ s ko or.usw. ()4“'6\
L" -1 ?a—\—Q\ “tw Q{_ witl. reg. cap. >
SM((A *"\‘a\:@‘lﬂ-( (oFs/ E?S)} % ‘P\M&Q

l, Con Qu.\e /u(a&ale Weﬁi&‘k“-( %""?L’ Gﬂ <lak:'\lu:0vﬂ

3, u?o(ol-c @ew velues O(Vlv Fes

Algorithm Theory, WS 2015/16 Fabian Kuhn

18



s-t Cuts

UNI
FREIBURG

Definition:
An s-t cut is a partition (4, B) of the vertex set such thats € A4

andt € B
@ 20
A » 20 Q

15

5 5
-_— [——

10

A =l

15

Algorithm Theory, WS 2015/16 Fabian Kuhn 19



Cut Capacity

UNI
FREIBURG

Definition:
The capacity c(A4, B) of an s-t-cut (4, B) is defined as

c(4,B) = Ce.
@ 20 z

0
=)
s
H
=
=
>

20
A
15

20 S_ B
B - L
=N - &

10
15

ot o

Algorithm Theory, WS 2015/16 Fabian Kuhn 20



Cuts and Flow Value

UNI
FREIBURG

Lemma: Let f be any s-t flow, and (4, B) any s-t cut. Then,

If| = 7o (4) — F™(A).

*
Proof:

et ™
= 2(.2(\1) (\ﬂ) Q}Vt\l € A\ ?9% : g(\n = &L\J))

veA = e'xcop}('”" NS 2‘
da ™ 74 v
- S - fw A

Algorithm Theory, WS 2015/16 Fabian Kuhn 21



UNI

Cuts and Flow Value

FREIBURG

Lemma: Let f be any s-t flow, and (4, B) any s-t cut. Then,

f] = foU(4) — f"(A).

Lemma: Let f be any s-t flow, and (4, B) any s-t cut. Then,

fl = f™(B) — fo"(B).

Proof:

wabwe .
90“@{ dosse g“(?ﬂ = gl Q%)

s £7®

Algorithm Theory, WS 2015/16 Fabian Kuhn 22



UNI
f

FREIBURG

Upper Bound on Flow Value

Lemma:
Let f be any s-t flow and (4, B) any s-t cut. Then |f| < c(4, B).
Proof:
ml‘ 1
2= £ - £
< (AR —O fw < cA®

;f .M(A) 2

Algorithm Theory, WS 2015/16 Fabian Kuhn 23



Ford-Fulkerson Gives Optimal Solution .

UNI
FREIBURG

Lemma: IfL is an s-t flow such that there is no augmenting path
in Gy, then there is an s-t cut (A", B”) in G for which

I_]:_I = c(4%,B").

Proof:

. Defineé*: set of nodes that can be reached from s on a path
with positive residual capacities in G¢:

* For B* =V \ A*’ (A*,B*) is an s-t cut
— By definition s € A* and t ¢ A* =— W™~

Algorithm Theory, WS 2015/16 Fabian Kuhn 24



Ford-Fulkerson Gives Optimal Solution .

UNI
FREIBURG

Lemma: If f is an s-t flow such that there is no augmenting path
in G, then there is an s-t cut (A%, B") in G for which

If| = c(A", B").
Proof: A‘* R*
O
=4 . ‘\3~W"\ Y (]
__,,’50/ /"G 90\& FE@_,.J, ele,Q
\ . e | «
L s
feg. Cop-
® ¢ = C -.Q( N=O
\Mo 0 - _aoba:ze
Qre)=CQ @ | vt PR
—~_Z VQ:;):? )
% out M. Cop = teH)=o
F M= copA B
{o=o = o

Algorithm Theory, WS 2015/16 Fabian Kuhn 25



Ford-Fulkerson Gives Optimal Solution .

UNI
FREIBURG

Lemma: If f is an s-t flow such that there is no augmenting path
in G, then there is an s-t cut (A%, B") in G for which

|f| = c(4%, B¥).
Proof:

Algorithm Theory, WS 2015/16 Fabian Kuhn 26



Ford-Fulkerson Gives Optimal Solution .

UNI
FREIBURG

Theorem: The flow returned by the Ford-Fulkerson algorithm is a
maximum flow.

Proof:

gk; @(ooo ve durueol, &'a v

L@ ot (AR
3. [f] = cC A", B

%ﬁ. ererg u@(ewg : \;g\ < <(AME)

Algorithm Theory, WS 2015/16 Fabian Kuhn 27



UNI
f

FREIBURG

Min-Cut Algorithm

Ford-Fulkerson also gives a min-cut algorithm:
E —  —————
Theorem: Given a flow f of maximum value, we can compute an

s-t cut of minimum capacity in O(m) time.
——

Proof:
wma kiuamuy, | 2 Qg - ?‘Q"e\

con B8 ot (AN b 10 (A, F)
La as bebe : TFS /BFS ow ws. grgh (fore s)

Ls all uedes veqclioble bow ¢
L’a A* (IQPQ[ of wodos N’atﬂ\asce "-GDM $>

—_— 14* cal Be cdw()ultOQh» @(w') &\‘%Q
(,A*,E*? s Gun $-+ cut ‘;ﬁ(‘l« wilw . CaFaC:L’J
becauge: g(r' vy D‘qﬂ)\(cu\' (A :B)/ we \ave le}é C(A"g)

[g\ =c(;4*,gk) < c(A®)

Algorithm Theory, WS 2015/16 Fabian Kuhn 28



Max-Flow Min-Cut Theorem

UNI
FREIBURG

Theorem: (Max-Flow Min-Cut Theorem)

In every flow network, the maximum value of an s-t flow is
equal to the minimum capacity of an s-t cut.

Proof: w\/

1+ v S
=

Algorithm Theory, WS 2015/16

Wy S"['

<@(om g“ and Vet (4%, %)
&&kl = C(A&/th)

Fabian Kuhn

29



Integer Capacities

UNI
f

FREIBURG

Theorem: (Integer-Valued Flows)

If all capacities in the flow network are integers, then there is a

maximum flow f for which the flow f(e) of every edge e is an
integer.

Proof:

:F? %}\(@3 e TN \wkp !{eew

Algorithm Theory, WS 2015/16 Fabian Kuhn 30



Non-Integer Capacities

UNI
FREIBURG

What if capacities are not integers?
N ‘TC)
* rational capacities: ¢, € R

— can be turned into integers by multiplying them with large enough integer

— algorithm still works correctly

* real (non-rational) capacities:
B

— not clear whether the algorithm always terminates

* even for integer capacities, time can linearly depend on the value

of the maximum flow A
C — ac

Algorithm Theory, WS 2015/16 Fabian Kuhn 31



Slow Execution

UNI
f

FREIBURG

 Number of iterations: 2000 (value of max. flow)

Algorithm Theory, WS 2015/16

Fabian Kuhn

32



UNI

Improved Algorithm

FREIBURG

Idea: Find the best augmenting path in each step
* best: path P with maximum bottleneck(P, f)

* Best path might be rather expensive to find
- find almost best path

A\ always a *@ 2
e Scaling parameteré_z * o

(initially, A = "max ¢, rounded down to next power of 2")
- — —

* Aslong as there is an augmenting path that improves the flow by
at least A, augment using such a path

=

e If there is no such path: A := 4/,
—-_—

Algorithm Theory, WS 2015/16 Fabian Kuhn 33



Scaling Parameter Analysis

UNI
FREIBURG

Lemma: If all capacities are integers, number of different scaling

parameters used is < 1 + [log, C|.

Cluax * wak. edee cap. \\

w«ka“tk %ﬂ qu g CE:C
\__‘Q.Szcdux
27 iy < e

\;[ ar‘;:J Q

——

* A-scaling phase: Time during which scaling parameter is A

o

"&?‘MS@S o dhiler EP;V §1M9-< ‘ O( ”‘0
ﬂ
0?5;3 K fod o ot

L
Algorithm Theory, WS 2015716 Fabian Kuhn 34




Length of a Scaling Phase

Lemma: Iff is the flow at the end of the A scaling phase, the
maximum flow in the network has value at most |f| + mA.
—_—

\g*\ < lfl{- mi &:EFM ot «t (A7)
- A
\_/-.-Ng,cq"- A
25
S0 23D %
e

\Q\-} wA < czaf(;,@
|29\« cap (A B)

= gu\) ~4"R) = Cph B wmd - el
S cop(AB) ~wd

Algorithm Theory, WS 2015/16 Fabian Kuhn

UNI
f

FREIBURG



Length of a Scaling Phase

|
FRE:BURG

UNI

Lemma: The number of augmentation in each scaling phase is at
most 2m.

a‘l' i?&Q ‘(X&«'S\m:ua v{ {’&L I\ - Qtabug fl‘“S»Q
Ly of o @i @k of Ho 20— soling plase

- k¥“1< (2] + ‘%}:—A ( prev. (Qemurar)
oadl Quaguen- ?1-(« Run Qromeas \g\ {W() 7 A

D

g Bunr O €) » Q) » ) = O (w oy C)

Algorithm Theory, WS 2015/16 Fabian Kuhn 36



UNI

Running Time: Scaling Max Flow Alg.

FREIBURG

Theorem: The number of augmentations of the algorithm with
scaling parameter and integer capacities is at most O(m log C). The
algorithm can be implemented in time 0 (m? log C).

Algorithm Theory, WS 2015/16 Fabian Kuhn 37



Strongly Polynomial Algorithm

UNI
f

FREIBURG

* Time of regular Ford-Fulkerson algorithm with integer capacities:

O(mC)

* Time of algorithm with scal/'fg p\arameter:
(
0(m?log C)

—_—

* O(log() is polynomial in the size of the input, but notinn

 Can we get an algorithm that runs in time polynomial in n?

* Always picking a shortest augmenting path leads to running time
0(m®n)

Algorithm Theory, WS 2015/16 Fabian Kuhn 38



Other Algorithms

UNI

FREIBURG

* There are many other algorithms to solve the maximum flow
problem, for example:

* Preflow-push algorithm:
— Maintains a preflow (V nodes: inflow > outflow)

—

— Alg. guarantees: As soon as we have a flow, it is optimal
22/\3

— Detailed discussion in dastcgeasss lecture

— Running time of basic algorithm: O0(m - n?)

— Doing steps in the “right” order: 0(n3)

e Current best known complexity: O(m - n)

— For graphs with m > n’* [King,Rao,Tarjan 1992/1994]
(for every constant € > 0) —_—

— For sparse graphs with m < n16/15-6 [Orlin, 2013]
U0 K-(bco e uuﬂ.\mu m&wet‘cc Cl*i) —GQQ"K Wak (XW O(w\ - V\OQ

Algorithm Theory, WS 2015/16 Fabian Kuhn Masgar'}

39



Maximum Flow Applications

UNI

 Maximum flow has many applications

 Reducing a problem to a max flow problem can even be seen as
an important algorithmic technique

* Examples:

— related network flow problems

— computation of small cuts

— computation of matchings

— computing disjoint paths
— scheduling problems
— assignment problems with some side constraints

Algorithm Theory, WS 2015/16 Fabian Kuhn 40

FREIBURG



